Publications by authors named "Amy M Savage"

Urban evolutionary ecology is inherently interdisciplinary. Moreover, it is a field with global significance. However, bringing researchers and resources together across fields and countries is challenging.

View Article and Find Full Text PDF

Urbanization, among the most widespread and multifaceted anthropogenic change drivers, exerts strong influences on a diversity of ecological communities worldwide. We have begun to understand how urbanization affects species diversity, yet we still have limited knowledge about the ways that species interactions are altered by urbanization. We have an especially poor understanding of how urbanization influences stress-buffering mutualisms, despite the high levels of multivariate stress that urban organisms must overcome and the importance of these interactions to the fitness of many organisms.

View Article and Find Full Text PDF

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars.

View Article and Find Full Text PDF

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors.

View Article and Find Full Text PDF

Cities are uniquely complex systems regulated by interactions and feedbacks between nature and human society. Characteristics of human society-including culture, economics, technology and politics-underlie social patterns and activity, creating a heterogeneous environment that can influence and be influenced by both ecological and evolutionary processes. Increasing research on urban ecology and evolutionary biology has coincided with growing interest in eco-evolutionary dynamics, which encompasses the interactions and reciprocal feedbacks between evolution and ecology.

View Article and Find Full Text PDF

The frequency and intensity of hurricanes are increasing globally, and anthropogenic modifications in cities have created systems that may be particularly vulnerable to their negative effects. Organisms living in cities are exposed to variable levels of chronic environmental stress. However, whether chronic stress ameliorates or exacerbates the negative effects of hurricanes remains an open question.

View Article and Find Full Text PDF
Article Synopsis
  • The indoor biome shows high diversity in both microbes and arthropods, influenced by factors such as room features and resident behavior.
  • Access to the outdoors and carpeted rooms are key factors affecting arthropod diversity, while basements have distinct community compositions.
  • Despite expected influences, factors like house tidiness, pesticide use, and pet ownership did not significantly affect arthropod communities, indicating the need for further research on their ecological role in indoor environments.
View Article and Find Full Text PDF

High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.

View Article and Find Full Text PDF

An ever expanding body of research investigates the human microbiome in general and the skin microbiome in particular. Microbiomes vary greatly from individual to individual. Understanding the factors that account for this variation, however, has proven challenging, with many studies able to account statistically for just a small proportion of the inter-individual variation in the abundance, species richness or composition of bacteria.

View Article and Find Full Text PDF

Skin microbes play a role in human body odour, health and disease. Compared with gut microbes, we know little about the changes in the composition of skin microbes in response to evolutionary changes in hosts, or more recent behavioural and cultural changes in humans. No studies have used sequence-based approaches to consider the skin microbe communities of gorillas and chimpanzees, for example.

View Article and Find Full Text PDF

The amount of energy consumed within an average city block is an order of magnitude higher than that consumed in any other ecosystem over a similar area. This is driven by human food inputs, but the consequence of these resources for urban animal populations is poorly understood. We investigated the role of human foods in ant diets across an urbanization gradient in Manhattan using carbon and nitrogen stable isotopes.

View Article and Find Full Text PDF
Article Synopsis
  • Urban green spaces like parks and medians offer vital ecosystem services, such as helping to manage food waste through arthropod activity.
  • Despite higher biological diversity in parks, arthropods in street medians were found to remove food waste more effectively, possibly due to specific species like the pavement ant thriving in those areas.
  • These findings suggest that the types of species present and their specific habitat conditions are more important for urban ecosystem services than sheer biodiversity, highlighting the ecological value even of smaller green spaces.
View Article and Find Full Text PDF

Background And Aims: In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants.

View Article and Find Full Text PDF

Geographic variation in the outcome of interspecific interactions may influence not only the evolutionary trajectories of species but also the structure of local communities. We investigated this community consequence of geographic variation for a facultative mutualism between ants and wild cotton (Gossypium thurberi). Ants consume wild cotton extrafloral nectar and can protect plants from herbivores.

View Article and Find Full Text PDF

Although mutualisms are widespread and often described in natural history accounts, their ecological influences on other community members remain largely unexplored. Many of these influences are likely a result of indirect effects. In this field study, we investigated the indirect effects of an ant-aphid mutualism on the abundance, survival rates and parasitism rates of a co-occurring herbivore.

View Article and Find Full Text PDF