Ageing Res Rev
August 2025
Many models of aging assume that processes such as cellular senescence or epigenetic alteration occur under sterile conditions. However, humans sustain infection with viral, bacterial, fungal, and parasite pathogens across the course of a lifetime, many of which are capable of long-term persistence in host tissue and nerves. These pathogens-especially members of the human virome like herpesviruses, as well as intracellular bacteria and parasites-express proteins and metabolites capable of interfering with host immune signaling, mitochondrial function, gene expression, and the epigenetic environment.
View Article and Find Full Text PDFThere are no approved treatments for post-COVID-19 condition (also known as long COVID), a debilitating disease state following SARS-CoV-2 infection that is estimated to affect tens of millions of people. A growing body of evidence shows that SARS-CoV-2 can persist for months or years following COVID-19 in a subset of individuals, with this reservoir potentially driving long-COVID symptoms or sequelae. There is, therefore, an urgent need for clinical trials targeting persistent SARS-CoV-2, and several trials of antivirals or monoclonal antibodies for long COVID are underway.
View Article and Find Full Text PDFMillions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection.
View Article and Find Full Text PDFThe novel virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of coronavirus disease 2019 (COVID-19). Across the globe, a subset of patients who sustain an acute SARS-CoV-2 infection are developing a wide range of persistent symptoms that do not resolve over the course of many months. These patients are being given the diagnosis Long COVID or Post-acute sequelae of COVID-19 (PASC).
View Article and Find Full Text PDFNat Microbiol
July 2021
The theory of autoimmunity was developed at a time when the human body was regarded as largely sterile. Antibodies in patients with chronic inflammatory disease could consequently not be tied to persistent human pathogens. The concept of the "autoantibody" was created to reconcile this phenomenon.
View Article and Find Full Text PDFThe human body is a superorganism in which thousands of microbial genomes continually interact with the human genome. A range of physical and neurological inflammatory diseases are now associated with shifts in microbiome composition. Seemingly disparate inflammatory conditions may arise from similar disruption of microbiome homeostasis.
View Article and Find Full Text PDFChronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) has long been associated with the presence of infectious agents, but no single pathogen has been reliably identified in all patients with the disease. Recent studies using metagenomic techniques have demonstrated the presence of thousands of microbes in the human body that were previously undetected and unknown to science. More importantly, such species interact together by sharing genes and genetic function within communities.
View Article and Find Full Text PDFPurpose Of Review: To demonstrate how dysbiosis of the human microbiome can drive autoimmune disease.
Recent Findings: Humans are superorganisms. The human body harbors an extensive microbiome, which has been shown to differ in patients with autoimmune diagnoses.
Microbes are increasingly being implicated in autoimmune disease. This calls for a re-evaluation of how these chronic inflammatory illnesses are routinely treated. The standard of care for autoimmune disease remains the use of medications that slow the immune response, while treatments aimed at eradicating microbes seek the exact opposite-stimulation of the innate immune response.
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2009
Recent research has implicated vitamin D deficiency (serum levels of 25-hydroxyvitamin D <50 nmol/L) with a number of chronic conditions, including autoimmune conditions such as multiple sclerosis, lupus, and psoriasis, and chronic conditions such as osteoporosis, osteoarthritis, metabolic syndrome, fibromyalgia and chronic fatigue syndrome. It has been assumed that low levels of 25-hydroxyvitamin D (25-D) accurately indicate vitamin D storage and vitamin D receptor (VDR)-mediated control of calcium metabolism and innate immunity. To evaluate this assumption, 25-D and 1,25-dihydroxyvitamin D3 (1,25-D) levels were measured in 100 Canadian patients with these conditions.
View Article and Find Full Text PDFEarly studies on vitamin D showed promise that various forms of the "vitamin" may be protective against chronic disease, yet systematic reviews and longer-term studies have failed to confirm these findings. A number of studies have suggested that patients with autoimmune diagnoses are deficient in 25-hydroxyvitamin D (25-D) and that consuming greater quantities of vitamin D, which further elevates 25 D levels, alleviates autoimmune disease symptoms. Some years ago, molecular biology identified 25 D as a secosteroid.
View Article and Find Full Text PDFStudies of autoimmune disease have focused on the characteristics of the identifiable antibodies. But as our knowledge of the genes associated with the disease states expands, we understand that humans must be viewed as superorganisms in which a plethora of bacterial genomes - a metagenome - work in tandem with our own. The NIH has estimated that 90% of the cells in Homo sapiens are microbial and not human in origin.
View Article and Find Full Text PDF