Publications by authors named "Amanda M Marchiando"

Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment.

View Article and Find Full Text PDF

Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that a gene called Atg16L1 is linked to Crohn's disease, which is a sickness that affects the gut.
  • Research on mice showed that if they had a changed version of the Atg16L1 gene, they could resist a harmful bacteria called Citrobacter rodentium.
  • The changes in Atg16L1 help the immune system fight infections better, but if there are problems with another gene called Nod2, this protection goes away.
View Article and Find Full Text PDF

γδ intraepithelial lymphocytes (IELs) are located beneath or between adjacent intestinal epithelial cells and are thought to contribute to homeostasis and disease pathogenesis. Using in vivo microscopy to image jejunal mucosa of GFP γδ T-cell transgenic mice, we discovered that γδ IELs migrate actively within the intraepithelial compartment and into the lamina propria. As a result, each γδ IEL contacts multiple epithelial cells.

View Article and Find Full Text PDF

Although the C-terminal cytoplasmic tail of the tight junction protein occludin is heavily phosphorylated, the functional impact of most individual sites is undefined. Here, we show that inhibition of CK2-mediated occludin S408 phosphorylation elevates transepithelial resistance by reducing paracellular cation flux. This regulation requires occludin, claudin-1, claudin-2, and ZO-1.

View Article and Find Full Text PDF

We questioned how tight junctions contribute to intestinal barrier function during the cell shedding that is part of physiological cell renewal. Intravital confocal microscopy studied the jejunal villus epithelium of mice expressing a fluorescent zonula occludens 1 (ZO-1) fusion protein. Vital staining also visualized the cell nucleus (Hoechst staining) or local permeability to luminal constituents (Lucifer Yellow; LY).

View Article and Find Full Text PDF

Background & Aims: Tumor necrosis factor (TNF) increases intestinal epithelial cell shedding and apoptosis, potentially challenging the barrier between the gastrointestinal lumen and internal tissues. We investigated the mechanism of tight junction remodeling and barrier maintenance as well as the roles of cytoskeletal regulatory molecules during TNF-induced shedding.

Methods: We studied wild-type and transgenic mice that express the fluorescent-tagged proteins enhanced green fluorescent protein-occludin or monomeric red fluorescent protein 1-ZO-1.

View Article and Find Full Text PDF

The perijunctional actomyosin ring contributes to myosin light chain kinase (MLCK)-dependent tight junction regulation. However, the specific protein interactions involved in this process are unknown. To test the hypothesis that molecular remodeling contributes to barrier regulation, tight junction protein dynamic behavior was assessed by fluorescence recovery after photobleaching (FRAP).

View Article and Find Full Text PDF

Epithelial paracellular barrier function, determined primarily by tight junction permeability, is frequently disrupted in disease. In the intestine, barrier loss can be mediated by tumor necrosis factor (alpha) (TNF) signaling and epithelial myosin light chain kinase (MLCK) activation. However, TNF induces only limited alteration of tight junction morphology, and the events that couple structural reorganization to barrier regulation have not been defined.

View Article and Find Full Text PDF

In vitro studies have demonstrated that occludin and tricellulin are important for tight junction barrier function, but in vivo data suggest that loss of these proteins can be overcome. The presence of a heretofore unknown, yet related, protein could explain these observations. Here, we report marvelD3, a novel tight junction protein that, like occludin and tricellulin, contains a conserved four-transmembrane MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain.

View Article and Find Full Text PDF

Epithelia form barriers that are essential to life. This is particularly true in the intestine, where the epithelial barrier supports nutrient and water transport while preventing microbial contamination of the interstitial tissues. Along with plasma membranes, the intercellular tight junction is the primary cellular determinant of epithelial barrier function.

View Article and Find Full Text PDF

Permeability of the intestinal epithelial barrier is regulated in response to physiological and pathophysiological stimuli. Recent work has characterized a critical role of acute tight junction regulation in diarrhea secondary to T cell activation and cytokine release. The intracellular mediators of the ensuing barrier dysfunction include myosin light chain kinase, which phosphorylates myosin II regulatory light chain and triggers structural tight junction reorganization.

View Article and Find Full Text PDF