Publications by authors named "Ally J Evans"

Seagrass meadows continue to be lost and degraded globally. Restoration is one promising and emerging conservation strategy to combat such losses and place seagrass on a pathway to net gain. However, successful restoration methods remain limited to a few species, and geographically constrained, with few experimental trials comparing planting methods across species and seagrass bioregions.

View Article and Find Full Text PDF

Artificial structures have become widespread features of coastal marine environments, and will likely proliferate further over the coming decades. These constitute new hard substrata in the marine environment which provide a fundamentally different habitat than natural shores. Eco-engineering solutions aim to ameliorate these differences by combining ecological knowledge and engineering criteria in the construction and modification of artificial substrata.

View Article and Find Full Text PDF

Intertidal artificial habitats are proliferating, but are generally simpler in structure and host lower biodiversity than natural rocky reefs. Eco-engineering aims to enhance the biodiversity of coastal infrastructure, often through physical structural modifications that mimic topographic properties of natural shores. Relationships between biotic assemblages and structural properties of natural and artificial reefs have been extensively studied at sampling scales of up to 1 m.

View Article and Find Full Text PDF

Artificial structures are widespread features of coastal environments, but are poor surrogates of natural rocky shores because they generally support depauperate assemblages with reduced population sizes. This has generated significant interest in eco-engineering solutions, including retrofitting seawalls with artificial rockpools to increase water retention and provide microhabitats. Although these have proven effective at individual sites, widespread uptake is contingent on evidence of consistent benefits across a range of contexts.

View Article and Find Full Text PDF

From microbes to humans, habitat structural complexity plays a direct role in the provision of physical living space, and increased complexity supports higher biodiversity and ecosystem functioning across biomes. Coastal development and the construction of artificial shorelines are altering natural landscapes as humans seek socio-economic benefits and protection from coastal storms, flooding and erosion. In this study, we evaluate how much structural complexity is missing on artificial coastal structures compared to natural rocky shorelines, across a range of spatial scales from 1 mm to 10 s of m, using three remote sensing platforms (handheld camera, terrestrial laser scanner and uncrewed aerial vehicles).

View Article and Find Full Text PDF