Publications by authors named "Alice Solda"

Unnatural base pairs (UBPs) augment the chemical diversity of artificial nucleic acids and can thus enable the generation of new aptamers and catalytic nucleic acids by selection. However, owing to a lack of methodologies, the reverse transcription of UBPs, a key step in RNA aptamer selection, has not been sufficiently characterized. Here, we present a series of versatile assays to investigate the reverse transcription of the TPT3:NaM base pair as a representative for hydrophobic unnatural base pairs.

View Article and Find Full Text PDF

Mapping of the metabolic activity of tumor tissues represents a fundamental approach to better identify the tumor type, elucidate metastatic mechanisms and support the development of targeted cancer therapies. The spatially resolved quantification of Warburg effect key metabolites, such as glucose and lactate, is essential. Miniaturized electrochemical biosensors scanned over cancer cells and tumor tissue to visualize the metabolic characteristics of a tumor is attractive but very challenging due to the limited oxygen availability in the hypoxic environments of tumors that impedes the reliable applicability of glucose oxidase-based glucose micro-biosensors.

View Article and Find Full Text PDF

Fullerenes are considered excellent photosensitizers, being highly suitable for photodynamic therapy (PDT). A lack of water solubility and low biocompatibility are, in many instances, still hampering the full exploitation of their potential in nanomedicine. Here, we used human serum albumin (HSA) to disperse fullerenes by binding up to five fullerene cages inside the hydrophobic cavities.

View Article and Find Full Text PDF

Multivalent protein interactors are an attractive modality for probing protein function and exploring novel pharmaceutical strategies. The throughput and precision of state-of-the-art methodologies and workflows for the effective development of multivalent binders is currently limited by surface immobilization, fluorescent labelling and sample consumption. Using the gephyrin protein, the master regulator of the inhibitory synapse, as benchmark, we exemplify the application of Fluorescence proximity sensing (FPS) for the systematic kinetic and thermodynamic optimization of multivalent peptide architectures.

View Article and Find Full Text PDF

Overconfidence is one of the most ubiquitous biases in the social sciences, but the evidence regarding its overall costs and benefits is mixed. To test the possibility that overconfidence might yield important relative benefits that offset its absolute costs, we conducted an experiment ( = 298 university students) in which pairs of participants bargained over the unequal allocation of a prize that was earned through a joint effort. We manipulated confidence using a binary noisy signal to investigate the causal effect of negotiators' beliefs about their relative contribution to the outcome of the negotiation.

View Article and Find Full Text PDF

The electronic, optical, and redox properties of thiophene-based materials have made them pivotal in nanoscience and nanotechnology. However, the exploitation of oligothiophenes in photodynamic therapy is hindered by their intrinsic hydrophobicity that lowers their biocompatibility and availability in water environments. Here, we developed human serum albumin (HSA)-oligothiophene bioconjugates that afford the use of insoluble oligothiophenes in physiological environments.

View Article and Find Full Text PDF

Networking is a symbiosis-it is about establishing, building and cultivating relationships that you will maintain over a long time and which may lead to mutually beneficial exchanges in your future. Your professional contacts might also become your close friends, since you frequently share the same experiences or merely have similar scientific and general interests or nerdy humour. Chemical societies are a fantastic way to expand your network and engaging or following the activities of the European Young Chemists Network (EYCN) might be the perfect starting point for you.

View Article and Find Full Text PDF

The native structure of the β-chitin in the gladius (squid pen) of squid can be used as a natural plaster to entrap and release a model drug, doxorubicin, in a targeted and controlled way. Local pH determines the protonation state of the doxorubicin molecules, controlling the two phenomena. Confocal microscopy shows that doxorubicin is uniformly embedded in the β-chitin squid pen and is not simply adsorbed on its surface.

View Article and Find Full Text PDF

We develop mid-infrared optoacoustic microscopy (MiROM) for label-free, bond-selective, live-cell metabolic imaging, enabling spatiotemporal monitoring of carbohydrates, lipids and proteins in cells and tissues. Using acoustic detection of optical absorption, MiROM converts mid-infrared sensing into a positive-contrast imaging modality with negligible photodamage and high sensitivity. We use MiROM to observe changes in intrinsic carbohydrate distribution from a diffusive spatial pattern to tight co-localization with lipid droplets during adipogenesis.

View Article and Find Full Text PDF

The lack of solubility in water and the formation of aggregates hamper many opportunities for technological exploitation of C. Here, different peptides were designed and synthesized with the aim of monomolecular dispersion of C in water. Phenylalanines were used as recognizing moieties, able to interact with C through π-π stacking, while a varying number of glycines were used as spacers, to connect the two terminal phenylalanines.

View Article and Find Full Text PDF

Hybrid systems have great potential for a wide range of applications in chemistry, physics and materials science. Conjugation of a biosystem to a molecular material can tune the properties of the components or give rise to new properties. As a workhorse, here we take a C60@lysozyme hybrid.

View Article and Find Full Text PDF

Objective: Hypothalamic tanycytes are glial cells that line the wall of the third ventricle and contact the cerebrospinal fluid (CSF). While they are known to detect glucose in the CSF we now show that tanycytes also detect amino acids, important nutrients that signal satiety.

Methods: Ca imaging and ATP biosensing were used to detect tanycyte responses to l-amino acids.

View Article and Find Full Text PDF

With the aim of developing miniaturized enzymatic biosensors suitable for in vitro diagnostic applications, such as monitoring of metabolites at single cell level, glucose and lactate biosensors were fabricated by immobilizing enzymes (glucose oxidase and lactate oxidase, respectively) on 10 μm Pt ultramicroelectrodes. These electrodes are meant to be employed as probes for scanning electrochemical microscopy (SECM), which is a unique technique for high-spatial-resolution electrochemical-based analysis. The use of enzymatic moieties improves sensitivity, time scale response, and information content of the microprobes; however, protein immobilization is a key step in the biosensor preparation that greatly affects the overall performance.

View Article and Find Full Text PDF

Enzymatic reactions in complex environments often take place with concentrations of enzyme comparable to that of substrate molecules. Two such cases occur when an enzyme is used to detect low concentrations of substrate/analyte or inside a living cell. Such concentrations do not agree with standard in vitro conditions, aimed at satisfying one of the founding hypotheses of the Michaelis-Menten reaction scheme, MM.

View Article and Find Full Text PDF

Aims: To develop an immunosensor for ultrasensitive detection of the NANOG protein. NANOG regulates pluripotency in stem cells and some cancer cells. This article reports the first electrochemical immunosensor for ultrasensitive detection and absolute quantification of the NANOG protein.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on two forms of the glutaredoxin (Grx) domain from mouse thioredoxin glutathione reductase (TGR), which were labeled with isotopes for detailed analysis.
  • The researchers successfully expressed and purified both the full-length Grx domain and the shorter version without the N-terminal region.
  • This research marks the first-ever NMR (nuclear magnetic resonance) analysis of a mammalian TGR, providing foundational insights into its structure.
View Article and Find Full Text PDF