Publications by authors named "Alexandra Carey Hoppe"

Vaccines generate long-lived plasma cells and memory B cells (Bmems) that may re-enter secondary germinal centers (GCs) to further mutate their B cell receptor upon boosting and re-exposure to antigen. We show in mouse models that lymph nodes draining the site of primary vaccination harbor a subset of Bmems that reside in the subcapsular niche, generate larger recall responses, and are more likely to re-enter GCs compared with circulating Bmems in non-draining lymph nodes. This location-dependent recall of Bmems into the GC in the draining lymph node was dependent on CD169 subcapsular sinus macrophages (SSMs) in the subcapsular niche.

View Article and Find Full Text PDF

Ultrasound-guided fine needle biopsy, also known as fine needle aspiration, of human axillary lymph nodes is a safe and effective procedure to assess the immune response within the lymph nodes following vaccination. Once acquired, lymph node cells can be characterized via flow cytometric immunophenotyping and/or single-cell RNA sequencing for gene expression and T and B cell receptors. Analysis of the immune cells from the lymph nodes enables the investigation of T and B cells that may interact at this site.

View Article and Find Full Text PDF

The worldwide rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations in the last 2 years has produced a multitude of studies investigating T-cell responses in the peripheral blood and a limited number in secondary lymphoid tissues. As a key component to an effective immune response, vaccine-specific T follicular helper (Tfh) cells are localized in the draining lymph node (LN) and assist in the selection of highly specific B-cell clones for the production of neutralizing antibodies. While these cells have been noted in the blood as circulating Tfh (cTfh) cells, they are not often taken into consideration when examining effective CD4 T-cell responses, particularly in immunocompromised groups.

View Article and Find Full Text PDF

Background: Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.

View Article and Find Full Text PDF

Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021.

View Article and Find Full Text PDF

Patients with indolent lymphoma undertaking recurrent or continuous B cell suppression are at risk of severe COVID-19. Patients and healthy controls (HC; N = 13) received two doses of BNT162b2: follicular lymphoma (FL; N = 35) who were treatment naïve (TN; N = 11) or received immunochemotherapy (ICT; N = 23) and Waldenström's macroglobulinemia (WM; N = 37) including TN (N = 9), ICT (N = 14), or treated with Bruton's tyrosine kinase inhibitors (BTKi; N = 12). Anti-spike immunoglobulin G (IgG) was determined by a high-sensitivity flow-cytometric assay, in addition to live-virus neutralization.

View Article and Find Full Text PDF