Publications by authors named "Alexander Meyers"

Colonization of the Moon and other planets is an aspiration of NASA and may yield important benefits for our civilization. The feasibility of such endeavors depends on both innovative engineering concepts and the successful adaptation of life forms that exist on Earth to inhospitable environments. In this study, we investigate the potential of Raman spectroscopy (RS) in a non-invasive and non-destructive assessment of changes in the biochemistry of plants exposed to zero gravity on the International Space Station and during growth on lunar regolith simulants on Earth.

View Article and Find Full Text PDF

The MISSE-Seed project was designed to investigate the effects of space exposure on seed quality and storage. The project tested the Multipurpose Materials International Space Station Experiment-Flight Facility (MISSE-FF) hardware as a platform for exposing biological samples to the space environment outside the International Space Station (ISS). Furthermore, it evaluated the capability of a newly designed passive sample containment canister as a suitable exposure unit for biological samples for preserving their vigor while exposing to the space environment to study multi-stressor effects.

View Article and Find Full Text PDF

Outside the protection of Earth's magnetic field, organisms are constantly exposed to space radiation consisting of energetic protons and other heavier charged particles. With the goal of crewed Mars exploration, the production of fresh food during long duration space missions is critical for meeting astronauts' nutritional and psychological needs. However, the biological effects of space radiation on plants have not been sufficiently investigated and characterized.

View Article and Find Full Text PDF

Spaceflight-induced changes in astronaut telomeres have garnered significant attention in recent years. While plants represent an essential component of future long-duration space travel, the impacts of spaceflight on plant telomeres and telomerase have not been examined. Here we report on the telomere dynamics of Arabidopsis thaliana grown aboard the International Space Station.

View Article and Find Full Text PDF

Polyethersulfone (PES) membranes provide a versatile tool for gravity-related plant studies. Benefits of this system include straightforward setup, no need for specialized equipment, long-term seed viability between plating and hydration/growth, and adaptability to diverse protocols and downstream analyses. Methods outlined here include seed sterilization, planting, growth, and dissection that will transition directly into any RNA extraction protocol.

View Article and Find Full Text PDF

Background: Understanding of gravity sensing and response is critical to long-term human habitation in space and can provide new advantages for terrestrial agriculture. To this end, the altered gene expression profile induced by microgravity has been repeatedly queried by microarray and RNA-seq experiments to understand gravitropism. However, the quantification of altered protein abundance in space has been minimally investigated.

View Article and Find Full Text PDF

Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is -aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol.

View Article and Find Full Text PDF
Article Synopsis
  • Coral bleaching happens when the relationship between corals and their beneficial algae is disrupted, either naturally or due to unusual events.
  • The bacterium Vibrio coralliilyticus is associated with coral diseases worldwide and has temperature-dependent effects on its pathogenicity.
  • A study using nuclear magnetic resonance (NMR) revealed that temperature influences specific metabolites in V. coralliilyticus, with betaine decreasing and succinate and glutamate increasing as temperatures rise.
View Article and Find Full Text PDF