POPDC2 encodes the Popeye domain-containing protein 2, which has an important role in cardiac pacemaking and conduction, due in part to its cyclic AMP (cAMP)-dependent binding and regulation of TREK-1 potassium channels. Loss of Popdc2 in mice results in sinus pauses and bradycardia, and morpholino-mediated knockdown of popdc2 in zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in POPDC2 in four families with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects, and hypertrophic cardiomyopathy.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. Here, we report results from a large genome-wide association study and multitrait analysis including 5,900 HCM cases, 68,359 controls and 36,083 UK Biobank participants with cardiac magnetic resonance imaging. We identified 70 loci (50 novel) associated with HCM and 62 loci (20 novel) associated with relevant left ventricular traits.
View Article and Find Full Text PDFencodes for the Popeye domain-containing protein 2 which has an important role in cardiac pacemaking and conduction, due in part to its cAMP-dependent binding and regulation of TREK-1 potassium channels. Loss of in mice results in sinus pauses and bradycardia and morpholino knockdown of zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in in 4 families that presented with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects and hypertrophic cardiomyopathy.
View Article and Find Full Text PDFBackground: MYH7 variants cause hypertrophic cardiomyopathy (HCM), noncompaction cardiomyopathy (NCCM), and dilated cardiomyopathy (DCM). Screening of relatives of patients with genetic cardiomyopathy is recommended from 10 to 12 years of age onward, irrespective of the affected gene.
Objectives: This study sought to study the penetrance and prognosis of MYH7 variant-associated cardiomyopathies.
Introduction: The MYH7 c.5135G > A p.(Arg1712Gln) variant has been identified in several patients worldwide and is classified as pathogenic in the ClinVar database.
View Article and Find Full Text PDFThe heart muscle diseases hypertrophic (HCM) and dilated (DCM) cardiomyopathies are leading causes of sudden death and heart failure in young, otherwise healthy, individuals. We conducted genome-wide association studies and multi-trait analyses in HCM (1,733 cases), DCM (5,521 cases) and nine left ventricular (LV) traits (19,260 UK Biobank participants with structurally normal hearts). We identified 16 loci associated with HCM, 13 with DCM and 23 with LV traits.
View Article and Find Full Text PDFObjectives: Hypertrophic cardiomyopathy (HCM) is an inherited cardiac disorder that affects over one in 500 persons worldwide. The autosomal dominant transmission of HCM implies that many relatives are at risk for HCM associated morbidity and mortality, therefore genetic testing and counselling is of great importance. However, in only 50-60% of the patients a mutation is found, which hampers predictive genetic testing in relatives.
View Article and Find Full Text PDFObjectives: To investigate the presence of hypertrophic cardiomyopathy (HCM) at first cardiac evaluation and during follow-up and cardiac events in predictively tested children who are mutation positive.
Study Design: The study included 119 predictively tested children who were mutation positive, with a mean age of 12.1 years.
Background: Familial forms of primary sinus bradycardia have sometimes been attributed to mutations in HCN4, SCN5A, and ANK2. In these studies, no structural cardiac alterations were reported in mutation carriers. However, a cluster of reports in the literature describe patients presenting with sinus bradycardia in association with left ventricular noncompaction cardiomyopathy (LVNC), pointing to a shared genetic cause.
View Article and Find Full Text PDFAims: Disease mechanisms regarding hypertrophic cardiomyopathy (HCM) are largely unknown and disease onset varies. Sarcomere mutations might induce energy depletion for which until now there is no direct evidence at sarcomere level in human HCM. This study investigated if mutations in genes encoding myosin-binding protein C (MYBPC3) and myosin heavy chain (MYH7) underlie changes in the energetic cost of contraction in the development of human HCM disease.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
August 2013
Left ventricular noncompaction (LVNC) is a relatively common genetic cardiomyopathy, characterized by prominent trabeculations with deep intertrabecular recesses in mainly the left ventricle. Although LVNC often occurs in an isolated entity, it may also be present in various types of congenital heart disease (CHD). The most prevalent CHD in LVNC is Ebstein anomaly, which is a rare form of CHD characterized by apical displacement and partial fusion of the septal and posterior leaflet of the tricuspid valve with the ventricular septum.
View Article and Find Full Text PDF