Publications by authors named "Alessandro Coretti"

Rare event sampling algorithms are essential for understanding processes that occur infrequently on the molecular scale, yet they are important for the long-time dynamics of complex molecular systems. One of these algorithms, transition path sampling (TPS), has become a standard technique to study such rare processes since no prior knowledge on the transition region is required. Most TPS methods generate new trajectories from old trajectories by selecting a point along the old trajectory, modifying its momentum in some way, and then "shooting" a new trajectory by integrating forward and backward in time.

View Article and Find Full Text PDF

Generative models and, in particular, normalizing flows are a promising tool in statistical mechanics to address the sampling problem in condensed-matter systems. In this work, we investigate the potential of normalizing flows to learn a transformation to map different liquid systems into each other while allowing at the same time to obtain an unbiased equilibrium distribution. We apply this methodology to the mapping of a small system of fully repulsive disks modeled via the Weeks-Chandler-Andersen potential into a Lennard-Jones system in the liquid phase at different coordinates in the phase diagram.

View Article and Find Full Text PDF

The computer simulation of many molecular processes is complicated by long timescales caused by rare transitions between long-lived states. Here, we propose a new approach to simulate such rare events, which combines transition path sampling with enhanced exploration of configuration space. The method relies on exchange moves between configuration and trajectory space, carried out based on a generalized ensemble.

View Article and Find Full Text PDF

Electrochemistry is central to many applications, ranging from biology to energy science. Studies now involve a wide range of techniques, both experimental and theoretical. Modeling and simulations methods, such as density functional theory or molecular dynamics, provide key information on the structural and dynamic properties of the systems.

View Article and Find Full Text PDF

We illustrate how, contrary to common belief, transient Fluctuation Relations (FRs) for systems in constant external magnetic field hold without the inversion of the field. Building on previous work providing generalized time-reversal symmetries for systems in parallel external magnetic and electric fields, we observe that the standard proof of these important nonequilibrium properties can be fully reinstated in the presence of net dissipation. This generalizes recent results for the FRs in orthogonal fields-an interesting but less commonly investigated geometry-and enables direct comparison with existing literature.

View Article and Find Full Text PDF

The validity of the fluctuation relations (FRs) for systems in a constant magnetic field is investigated. Recently introduced time-reversal symmetries that hold in the presence of static electric and magnetic fields and of deterministic thermostats are used to prove the transient FRs without invoking, as commonly done, inversion of the magnetic field. Steady-state FRs are also derived, under the t-mixing condition.

View Article and Find Full Text PDF

We revisit the statistical mechanics of charge fluctuations in capacitors. In constant-potential classical molecular simulations, the atomic charges of electrode atoms are treated as additional degrees of freedom which evolve in time so as to satisfy the constraint of fixed electrostatic potential for each configuration of the electrolyte. The present work clarifies the role of the overall electroneutrality constraint, as well as the link between the averages computed within the Born-Oppenheimer approximation and that of the full constant-potential ensemble.

View Article and Find Full Text PDF

A new algorithm to solve numerically the evolution of empirical shell models of polarizable systems is presented. It employs constrained molecular dynamics to satisfy exactly, at each time step, the crucial condition that the gradient of the potential with respect to the shell degrees of freedom is null. The algorithm is efficient, stable, and, contrary to the available alternatives, it is symplectic and time reversible.

View Article and Find Full Text PDF

The time-reversal properties of charged systems in a constant external magnetic field are reconsidered in this paper. We show that the evolution equations of the system are invariant under a new symmetry operation that implies a new signature property for time-correlation functions under time reversal. We then show how these findings can be combined with a previously identified symmetry to determine, for example, null components of the correlation functions of velocities and currents and of the associated transport coefficients.

View Article and Find Full Text PDF