Publications by authors named "Aleksander Fedorov"

Fluorescence spectroscopy is used to characterize the partition of three second-generation D,L-α-cyclic peptides to two lipid model membranes. The peptides have proven antimicrobial activity, particularly against Gram positive bacteria, and the model membranes are formed of either with 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) or its mixture with 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), at a molar ratio of (1:1). The peptide's intrinsic fluorescence was used in the Steady State and/or Time Resolved Fluorescence Spectroscopy experiments, showing that the peptides bind to the membranes, and the extent of their partition is thereof quantified.

View Article and Find Full Text PDF

1-deoxy-sphingolipids, also known as atypical sphingolipids, are directly implicated in the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type 2. The mechanisms underlying their patho-physiological actions are yet to be elucidated. Accumulating evidence suggests that the biological actions of canonical sphingolipids are triggered by changes promoted on membrane organization and biophysical properties.

View Article and Find Full Text PDF

Compared to the canonical sphingoid backbone of sphingolipids (SLs), atypical long-chain bases (LCBs) lack C1-OH (1-deoxy-LCBs) or C1-CHOH (1-deoxymethyl-LCBs). In addition, when unsaturated, they present a -double bond instead of the canonical  Δ4-5 -double bond. These atypical LCBs are directly correlated with the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type II through yet unknown mechanisms.

View Article and Find Full Text PDF

Surfactant protein SP-B is absolutely required for the generation of functional pulmonary surfactant, a unique network of multilayered membranes, which stabilizes the respiratory air-liquid interface. It has been proposed that SP-B assembles into hydrophobic rings and tubes that facilitate the rapid transfer of phospholipids from membrane stores into the interface and the formation of multilayered films, ensuring the stability of the alveoli against physical forces leading to their collapse. To elucidate the molecular organization of SP-B-promoted multilamellar membrane structures, time-resolved Förster Resonance Energy Transfer (FRET) experiments between BODIPY-PC or BODIPY-derivatized SP-B (BODIPY/SP-B), as donor probes, and octadecylrhodamine B, as acceptor probe, were performed in liposomes containing SP-B or BODIPY/SP-B.

View Article and Find Full Text PDF

Potassium channels selectivity filter (SF) conformation is modulated by several factors, including ion-protein and protein-protein interactions. Here, we investigate the SF dynamics of a single Trp mutant of the potassium channel KcsA (W67) using polarized time-resolved fluorescence measurements. For the first time, an analytical framework is reported to analyze the homo-Förster resonance energy transfer (homo-FRET) within a symmetric tetrameric protein with a square geometry.

View Article and Find Full Text PDF

Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P and PI(3,5)P. Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size.

View Article and Find Full Text PDF

Glucosylceramide (GlcCer) plays an active role in the regulation of various cellular events. Moreover, GlcCer is also a key modulator of membrane biophysical properties, which might be linked to the mechanism of its biological action. In order to understand the biophysical implications of GlcCer on membranes of living cells, we first studied the effect of GlcCer on artificial membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol).

View Article and Find Full Text PDF

Glucosylceramide (GlcCer), one of the simplest glycosphingolipids, plays key roles in physiology and pathophysiology. It has been suggested that GlcCer modulates cellular events by forming specialized domains. In this study, we investigated the interplay between GlcCer and cholesterol (Chol), an important lipid involved in the formation of liquid-ordered (lo) phases.

View Article and Find Full Text PDF

Poly(butyl methacrylate) nanoparticles encapsulating a silica precursor, tetraethoxysilane (TEOS), were synthesized by a two-step emulsion polymerization process. We show that TEOS remains mostly unreacted inside the nanoparticles in water but acts both as a plasticizer and cross-linker in films cast from the dispersions. The diffusion-enhancing plasticizing effect is dominant at annealing temperatures closer to the glass-transition temperature of the polymer, and sol-gel cross-linking reactions predominate at higher temperatures.

View Article and Find Full Text PDF

The establishment of protein-protein interactions between membrane-bound proteins is associated with several biological functions and dysfunctions. Here, an analytical framework that uses energy homo transfer to directly probe quantitatively the oligomerization state of membrane-bound proteins engaged in a three-state cooperative partition is presented. Briefly, this model assumes that monomeric protein molecules partition into the bilayer surface and reversibly assemble into oligomers with k subunits.

View Article and Find Full Text PDF

Calcium has been shown to induce clustering of PI(4,5)P2 at high and non-physiological concentrations of both the divalent ion and the phosphatidylinositol, or on supported lipid monolayers. In lipid bilayers at physiological conditions, clusters are not detected through microscopic techniques. Here, we aimed to determine through spectroscopic methodologies if calcium plays a role in PI(4,5)P2 lateral distribution on lipid bilayers under physiological conditions.

View Article and Find Full Text PDF

Submillimolar concentrations of cytotoxic bile acids (BAs) induce cell death via apoptosis. On the other hand, several cytoprotective BAs were shown to prevent apoptosis in the same concentration range. Still, the mechanisms by which BAs trigger these opposite signaling effects remain unclear.

View Article and Find Full Text PDF

Edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-phosphocholine) and miltefosine (hexadecylphosphocholine) are synthetic alkylphospholipids (ALPs) that are reported to selectively accumulate in tumor cell membranes, inducing Fas clustering and activation on lipid rafts, triggering apoptosis. However, the exact mechanism by which these lipids elicit these events is still not fully understood. Recent studies propose that their mode of action might be related with alterations of lipid rafts biophysical properties caused by these lipid drugs.

View Article and Find Full Text PDF

We prepared water-dispersible core-shell nanoparticles with a perylenediimide-labeled silica core and a poly(butyl methacrylate) shell, for application in photoactive high performance coatings. Films cast from water dispersions of the core-shell nanoparticles are flexible and transparent, featuring homogeneously dispersed silica nanoparticles, and exhibiting fluorescence under appropriate excitation. We characterized the film formation process using nanoparticles where the polymer shell has been labeled with either a non-fluorescent N-benzophenone derivative (NBen) or a fluorescent phenanthrene derivative (PheBMA).

View Article and Find Full Text PDF

Recent findings implicate that "amyloid-like" fiber formation by several non-amyloidogenic proteins/peptides can be triggered by negatively charged lipid membranes. In order to elucidate the factors that govern the formation of these structures, the interaction of lysozyme with phosphatidylserine-containing lipid vesicles was studied by steady-state and time-resolved fluorescence measurements. Three consecutive stages in the interaction of Alexa488-fluorescently labeled lysozyme (Lz-A488) with acidic lipid vesicles were identified in ensemble average measurements.

View Article and Find Full Text PDF

The organization of lipids and proteins into domains in cell membranes is currently an established subject within biomembrane research. Fluorescent probes have been used to detect and characterize these membrane lateral heterogeneities. However, a comprehensive understanding of the link between the probes' fluorescence features and membrane lateral organization can only be achieved if their photophysical properties are thoroughly defined.

View Article and Find Full Text PDF

To comprehend the molecular processes that lead to the Fas death receptor clustering in lipid rafts, a 21-mer peptide corresponding to its single transmembrane domain (TMD) was reconstituted into mammalian raft model membranes composed of an unsaturated glycerophospholipid, sphingomyelin, and cholesterol. The peptide membrane lateral organization and dynamics, and its influence on membrane properties, were studied by steady-state and time-resolved fluorescence techniques and by attenuated total reflection Fourier transformed infrared spectroscopy. Our results show that Fas TMD is preferentially localized in liquid-disordered membrane regions and undergoes a strong reorganization as the membrane composition is changed toward the liquid-ordered phase.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied the self-assembly of a specific polymer in water using fluorescent probes, C153 and ORB, to understand how micelles form and behave.
  • They found the critical micelle concentration (CMC) to be around 1.8 microM, indicating the point at which micelles start to form in solution.
  • Measurements showed that C153 exists in both micelles and water, while ORB is found in premicellar aggregates and micelle cores, revealing that the micelle core has complex regions that are either solid-like or fluid-like depending on their structure.
View Article and Find Full Text PDF

The fluorescence of the single tryptophan (Trp69) of cutinase from Fusarium solani pisi, free in aqueous solution and adsorbed onto the surface of poly(methyl methacrylate) (PMMA) latex particles, was studied at pHs of 4.5 and 8.0.

View Article and Find Full Text PDF

Background: Serum and high ionic strength solutions constitute important barriers to cationic lipid-mediated intravenous gene transfer. Preparation or incubation of lipoplexes in these media results in alteration of their biophysical properties, generally leading to a decrease in transfection efficiency. Accurate quantification of these changes is of paramount importance for the success of lipoplex-mediated gene transfer in vivo.

View Article and Find Full Text PDF

Cationic lipid/DNA complexes (lipoplexes) are promising vehicles for DNA vaccines or gene therapy. In these systems, transfection efficiency is highly related to lipoplex charge ratio, since lipoplexes with charge ratios (+/-) lower than electroneutrality have most DNA uncovered by the liposomes, and thus are unprotected from enzyme degradation. However, a large excess of cationic lipids is undesirable because of eventual cytotoxicity.

View Article and Find Full Text PDF

We studied the effect of a model basic peptide, hexalysiltryptophan, on the organization of dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylserine unilamellar vesicles by means of fluorescent resonance energy transfer (FRET) between fluorescently labeled phospholipids. Several FRET theoretical models assuming different bilayer geometries and probe distributions were fitted to the time-resolved data. The experiments were carried out at two temperatures in different regions of the lipid mixture phase diagram.

View Article and Find Full Text PDF

This study is aimed at establishing optimal conditions for the use of 2,2'-[1,3-propanediylbis[(dimethyliminio)-3,1-propanediyl-1(4H)-pyridinyl-4-ylidenemethy-lidyne]]bis[3-methyl]-tetraiodide (BOBO-1) as a fluorescent probe in the characterization of lipid/DNA complexes (lipoplexes). The fluorescence spectra, anisotropy, fluorescence lifetimes and fluorescence quantum yields of this dimeric cyanine dye in plasmid DNA (2694 base pairs) with and without cationic liposomes (1,2-dioleoyl-3-trimethylammonium-propane [DOTAP]), are reported. The photophysical behavior of the dye in the absence of lipid was studied for several dye/DNA ratios using both supercoiled and relaxed plasmid.

View Article and Find Full Text PDF

Neokyotorphin (NKT) is a multifunctional pentapeptide that is involved in biological functions as diverse as analgesia, antihibernatic regulation and proliferation stimulus of tumour cells. The interaction of neokyotorphin with cell membranes is potentially important to all these multiple biological processes since receptor-mediated processes are thought to be involved in neokyotorphin action. Sargent and Schwyzer proposed in their "membrane catalysis" model that ligands interact with membrane lipids in order to adopt the necessary conformation for cell receptors.

View Article and Find Full Text PDF

Fluorescence techniques were used to study (1) the extent of insertion of the bioactive cyclic dipeptide cyclo(l-tyrosyl-l-prolyl), maculosin, in model systems of membranes of 1, 2-palmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl choline (POPC), (2) its in-depth location in those lipidic membranes, and (3) the influence of cholesterol on the dipeptides's location and orientation. Partition into lipidic bilayers is extensive, mainly for liquid crystalline phase membranes (K(p)=1.3x10(4)).

View Article and Find Full Text PDF