Publications by authors named "Alejandro D Murad"

Mammalian circadian rhythms are entrained by light pulses that induce phosphorylation events in the suprachiasmatic nuclei (SCN). Ca(2+)-dependent enzymes are known to be involved in circadian phase shifting. In this paper, we show that calcium/calmodulin-dependent kinase II (CaMKII) is rhythmically phosphorylated in the SCN both under entrained and free-running (constant dark) conditions while neuronal nitric oxide synthase (nNOS) is rhythmically phosphorylated in the SCN only under entrained conditions.

View Article and Find Full Text PDF

Mammalian circadian rhythms are generated by the hypothalamic suprachiasmatic nuclei and finely tuned to environmental periodicities by neurochemical responses to the light-dark cycle. Light reaches the clock through a direct retinohypothalamic tract, primarily through glutamatergic innervation, and its action is probably regulated by a variety of other neurotransmitters. A key second messenger in circadian photic entrainment is calcium, mobilized through membrane channels or intracellular reservoirs, which triggers the activation of several enzymes, including a calcium/calmodulin-dependent protein kinase and nitric oxide synthase.

View Article and Find Full Text PDF