Publications by authors named "Alejandro A Granados"

Astrocyte specification during development is influenced by both intrinsic and extrinsic factors, but the precise contribution of each remains poorly understood. Here we show that mouse septal astrocytes derived from Nkx2.1- and Zic4-expressing progenitor zones are primarily allocated into the medial septal and lateral septal nuclei, respectively.

View Article and Find Full Text PDF

In animal cells, molecular pathways often comprise families of variant components, such as ligands or receptors. These pathway components are differentially expressed by different cell types, potentially tailoring pathway function to cell context. However, it has remained unclear how pathway expression profiles are distributed across cell types and whether similar profiles can occur in dissimilar cell types.

View Article and Find Full Text PDF

Astrocyte specification during development is influenced by both intrinsic and extrinsic factors, but the precise contribution of each remains poorly understood. Here we show that septal astrocytes from Nkx2.1 and Zic4 expressing progenitor zones are allocated into non-overlapping domains of the medial (MS) and lateral septal nuclei (LS) respectively.

View Article and Find Full Text PDF

Background: Infection by coronavirus SARS-CoV2 is a severe and often deadly disease that has implications for the respiratory system and multiple organs across the human body. While the effects in the lung have been extensively studied, less is known about the impact COVID-19 has across other organs.

Methods: Here, we contribute a single-nuclei RNA-sequencing atlas comprising six human organs across 20 autopsies where we analyzed the transcriptional changes due to COVID-19 in multiple cell types.

View Article and Find Full Text PDF

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of CRISPR and molecular tools allows for the mapping of cell lineages via induced DNA mutations, with the potential to apply this method to more complex organisms in the future.
  • A DREAM challenge was organized to test the performance of lineage reconstruction algorithms using both real data from C. elegans and simulated data from Mus musculus, comparing 22 different approaches.
  • Some methods showed strong performance, but structural challenges in the lineage trees affected results; using smaller sub-trees to train algorithms was beneficial for improving the accuracy of larger tree reconstructions.
View Article and Find Full Text PDF

During multicellular development, spatial position and lineage history play powerful roles in controlling cell fate decisions. Using a serine integrase-based recording system, we engineered cells to record lineage information in a format that can be read out in situ The system, termed integrase-editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states.

View Article and Find Full Text PDF

Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells.

View Article and Find Full Text PDF

Improving in one aspect of a task can undermine performance in another, but how such opposing demands play out in single cells and impact on fitness is mostly unknown. Here we study budding yeast in dynamic environments of hyperosmotic stress and show how the corresponding signalling network increases cellular survival both by assigning the requirements of high response speed and high response accuracy to two separate input pathways and by having these pathways interact to converge on Hog1, a p38 MAP kinase. Cells with only the less accurate, reflex-like pathway are fitter in sudden stress, whereas cells with only the slow, more accurate pathway are fitter in increasing but fluctuating stress.

View Article and Find Full Text PDF