Here, we present the effect of 1.2-9.9 nm Au particles on crystal violet-treated polymer under a low intensity of visible light.
View Article and Find Full Text PDFQuantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.
View Article and Find Full Text PDFReaction of a molecular zinc-hydride [{(ArNCMe)CH}ZnH] (Ar=2,6-di-isopropylphenyl) with 0.5 equiv. of [Ni(CO)Cp] led to the isolation of a nickel-zinc hydride complex containing a bridging 3-centre,2-electron Ni-H-Zn interaction.
View Article and Find Full Text PDFAcetyl coenzyme A synthase (ACS) catalyzes the formation and deconstruction of the key biological metabolite, acetyl coenzyme A (acetyl-CoA). The active site of ACS features a {NiNi} cluster bridged to a [FeS] cubane known as the A-cluster. The mechanism by which the A-cluster functions is debated, with few model complexes able to replicate the oxidation states, coordination features, or reactivity proposed in the catalytic cycle.
View Article and Find Full Text PDFComplexes featuring multiple metal centres are of growing interest regarding metal-metal cooperation and its tuneability. Here the synthesis and characterisation of heterobimetallic complexes of a 3d metal (4: Mn, 5: Co) and lanthanum supported by a (1,1,1-tris[(3-methoxysalicylideneamino)methyl]ethane) ligand is reported, as well as discussion of their electronic structure electron paramagnetic resonance (EPR) spectroscopy, electrochemical experiments and computational studies. Competitive binding experiments of the ligand and various metal salts unequivocally demonstrate that in these heterobimetallic complexes the 3d metal (Mn, Co) selectively occupies the κ-NO binding site of the ligand, whilst La occupies the κ-O metal binding site in line with their relative oxophilicities.
View Article and Find Full Text PDFMany proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule.
View Article and Find Full Text PDFGraphite is the most commercially successful anode material for lithium (Li)-ion batteries: its low cost, low toxicity, and high abundance make it ideally suited for use in batteries for electronic devices, electrified transportation, and grid-based storage. The physical and electrochemical properties of graphite anodes have been thoroughly characterized. However, questions remain regarding their electronic structures and whether the electrons occupy localized states on Li, delocalized states on C, or an admixture of both.
View Article and Find Full Text PDFTi(IV) and Ti(III) complexes using the PCP ligand have been synthesized (PCP = CH-2,6-(CHPBu)). The [PCP]Li synthon can be reacted with TiCl(THF) to form (PCP)TiCl () in limited yields due to significant reduction of the titanium synthon. The Ti(III) complex (PCP)TiCl () has been further characterized.
View Article and Find Full Text PDFEthylene is an important feedstock in the chemical industry, but currently requires production from fossil resources. The electrocatalytic oxidative decarboxylation of succinic acid offers in principle an environmentally friendly route to generate ethylene. Here, a detailed investigation of the role of different carbon electrode materials and characteristics revealed that a flat electrode surface and high ordering of the carbon material are conducive for the reaction.
View Article and Find Full Text PDFThe nitroxide TPA (2,2,5,5-tetramethyl-pyrrolin-1-oxyl-3-acetylene) is an excellent spin label for EPR studies of RNA. Previous synthetic methods, however, are complicated and require special equipment. Herein, we describe a uridine derived phosphoramidite with a photocaged TPA unit attached.
View Article and Find Full Text PDFA combined Tof-SIMS, XPS and STM characterization has been performed to study the deposition of a sulphur-functionalized nitronyl nitroxide radical on Au(111) clearly demonstrating the chemisorption of intact molecules. Continuous -wave EPR characterization showed that the radical molecules maintain their paramagnetic character. Pulsed EPR measurements allowed to determine the decoherence time of the nanostructure at 80 K, which turned out to be comparable to the one measured in frozen solution and longer than previously reported for many radicals and other paramagnetic molecules at much lower temperatures.
View Article and Find Full Text PDFThe structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells.
View Article and Find Full Text PDFThe C7-Gd and C8-Gd tags are compact hydrophilic cyclen-based lanthanide tags for conjugation to cysteine residues in proteins. The tags are enantiomers, which differ in the configuration of the 2-hydroxylpropyl pendant arms coordinating the lanthanide ion. Here, we report the electron paramagnetic resonance (EPR) performance of the C7-Gd ( S configuration) and C8-Gd ( R configuration) tags loaded with Gd(III) on two mutants of the homodimeric ERp29 protein.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2017
Distance measurements by pulse electron paramagnetic resonance techniques, such as double electron-electron resonance (DEER, also called PELDOR), have become an established tool to explore structural properties of biomacromolecules and their assemblies. In such measurements a pair of spin labels provides a single distance constraint. Here we show that by employing three different types of spin labels that differ in their spectroscopic and spin dynamics properties it is possible to extract three independent distances from a single sample.
View Article and Find Full Text PDFWe have applied high-field (W-band) pulse electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) to characterize the coordination sphere of the Mn co-factor in the nucleotide binding sites (NBSs) of ABC transporters. MsbA and BmrCD are two efflux transporters hypothesized to represent divergent catalytic mechanisms. Our results reveal distinct coordination of Mn to ATP and transporter residues in the consensus and degenerate NBSs of BmrCD.
View Article and Find Full Text PDFLigand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates.
View Article and Find Full Text PDFIn this work, we present evidence on the suitability of spin probes to report on the thermal treatment of bovine serum albumin (BSA), in the temperature range 293-343 K, and indirectly monitor the release of sodium dodecyl sulfate (SDS) from its complex with BSA using a covalent gel with β-cyclodextrin (β-CD) in the network. The spin probes used, 5- and 7-doxyl-stearic acids (5-DSA, 7-DSA) or 4-(N,N'-dimethyl-N-hexadecyl)ammonium-2,2',6,6'-tetramethylpiperidine-1-oxyl iodide (CAT16), present similar, fatty acid-like structural features. Their continuous wave electron paramagnetic resonance (CW-EPR) spectra, however, reflect different dynamics when complexed with BSA: a restricted motion for 5-DSA, almost nonsensitive to the heating/cooling cycle, and a faster temperature-dependent dynamic motion for CAT16.
View Article and Find Full Text PDFIn this paper we report on the characterization by continuous wave electron spin resonance spectroscopy (cw-ESR) of a nitronyl nitroxide radical in a nematic phase. A detailed analysis is performed by exploiting an innovative modeling strategy alternative to the usual spectral simulation approach: most of the molecular parameters needed to calculate the spectrum are evaluated a priori and the ESR spectrum is obtained by direct application of the stochastic Liouville equation. Allowing a limited set of fitting parameters it is possible to reproduce satisfactorily ESR spectra in the temperature range 260 K-340 K including the nematic-to-isotropic phase transition (325.
View Article and Find Full Text PDF