Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.
View Article and Find Full Text PDFThe therapeutic challenges of orthopedic device-related infections and emerging antimicrobial resistance have attracted attention to drug delivery technologies. This study evaluates the preclinical efficacy of local single- and dual-antibiotic therapy against implant-associated osteomyelitis (IAO) using a drug-eluting depot technology, CarboCell, that provides sustained release of high-dose antibiotics and allows for strategic placement in relation to infectious lesions. Clindamycin and gentamicin were formulated in CarboCell compositions.
View Article and Find Full Text PDFJ Infect Dis
September 2024
Background: Bone infections with Staphylococcus aureus are notoriously difficult to treat and have high recurrence rates. Local antibiotic delivery systems hold the potential to achieve high in situ antibiotic concentrations, which are otherwise challenging to achieve via systemic administration. Existing solutions have been shown to confer suboptimal drug release and distribution.
View Article and Find Full Text PDFToxins (Basel)
January 2019
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production.
View Article and Find Full Text PDFSnakes, scorpions, and spiders are venomous animals that pose a threat to human health, and severe envenomings from the bites or stings of these animals must be treated with antivenom. Current antivenoms are based on plasma-derived immunoglobulins or immunoglobulin fragments from hyper-immunized animals. Although these medicines have been life-saving for more than 120 years, opportunities to improve envenoming therapy exist.
View Article and Find Full Text PDF