Publications by authors named "Ala Somarowthu"

Congenital disorders of glycosylation (CDG) are a group of neurogenetic conditions resulting from disruptions in the cellular glycosylation machinery. The majority of CDG patients have compound heterozygous pathogenic variants in the phosphomannomutase 2 ( gene. Individuals with PMM2-CDG exhibit multi-systemic symptoms, prominently featuring neurological deficits with nearly all patients exhibiting cerebellar hypoplasia and ataxia.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and unresolved. Using optical neuroimaging of neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD).

View Article and Find Full Text PDF

Objective: SCN2A encodes the voltage-gated sodium (Na+) channel α subunit Na1.2, which is important for the generation and forward and back propagation of action potentials in neurons. Genetic variants in SCN2A are associated with a spectrum of neurodevelopmental disorders.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and unresolved. Using optical neuroimaging of neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD).

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenic variant -p.Ala421Val (A421V) is linked to severe developmental and epileptic issues, including treatment-resistant epilepsy with various seizure types, but the exact disease mechanisms remain unclear.
  • This study created a transgenic mouse model carrying the A421V variant, revealing that its expression leads to epilepsy and early death, along with decreased functions in key inhibitory neurons in the brain.
  • Findings showed that the A421V variant disrupts potassium channel expression and neuronal excitability, causing network dysfunction that underlies the observed epileptic encephalopathy.
View Article and Find Full Text PDF

The recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a severe neurodevelopmental disorder caused by loss-of-function variants in SCN1A, which encodes the voltage-gated sodium channel subunit Nav1.1. We recently showed that neocortical vasoactive intestinal peptide interneurons (VIP-INs) express Nav1.

View Article and Find Full Text PDF

Objective: Loss-of-function variants in SCN1A cause Dravet syndrome, the most common genetic developmental and epileptic encephalopathy (DEE). However, emerging evidence suggests separate entities of SCN1A-related disorders due to gain-of-function variants. Here, we aim to refine the clinical, genetic, and functional electrophysiological features of a recurrent p.

View Article and Find Full Text PDF

Dravet syndrome is a neurodevelopmental disorder characterized by epilepsy, intellectual disability, and sudden death due to pathogenic variants in SCN1A with loss of function of the sodium channel subunit Nav1.1. Nav1.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a neurodevelopmental disorder due to pathogenic variants in encoding the Nav1.1 sodium channel subunit, characterized by treatment-resistant epilepsy, temperature-sensitive seizures, developmental delay/intellectual disability with features of autism spectrum disorder, and increased risk of sudden death. Convergent data suggest hippocampal dentate gyrus (DG) pathology in DS () mice.

View Article and Find Full Text PDF

Epilepsy is a severe neurological disorder defined by spontaneous seizures. Current treatment options fail in a large proportion of patients, while questions as to the basic mechanisms of seizure initiation and propagation remain. Advances in imaging of seizures in experimental model systems could lead to a better understanding of mechanisms of seizures and epilepsy.

View Article and Find Full Text PDF

Recurrent seizures, which define epilepsy, are transient abnormalities in the electrical activity of the brain. The mechanistic basis of seizure initiation, and the contribution of defined neuronal subtypes to seizure pathophysiology, remains poorly understood. We performed two-photon calcium imaging in neocortex during temperature-induced seizures in male and female Dravet syndrome (+/-) mice, a neurodevelopmental disorder with prominent temperature-sensitive epilepsy.

View Article and Find Full Text PDF

This study investigates the effect of spectral degradation on cortical speech encoding in complex auditory scenes. Young normal-hearing listeners were simultaneously presented with two speech streams and were instructed to attend to only one of them. The speech mixtures were subjected to noise-channel vocoding to preserve the temporal envelope and degrade the spectral information of speech.

View Article and Find Full Text PDF

Low-frequency acoustic cues have shown to improve speech perception in cochlear-implant listeners. However, the mechanisms underlying this benefit are still not well understood. This study investigated the extent to which low-frequency cues can facilitate listeners' use of linguistic knowledge in simulated electric-acoustic stimulation (EAS).

View Article and Find Full Text PDF