Publications by authors named "Akihito Omori"

Despite being one of the bilaterians, the body plan of echinoderms shifts from bilateral symmetry to five-fold radial, or pentaradial symmetry during embryogenesis or their metamorphosis. While the clarification of the developmental mechanism behind this transition will be a basis for understanding their unique body plan evolution, it is still poorly understood. With this regard, the hydrocoel, a mesodermal coelom formed on the left side of bilateral larva, would be a clue for understanding the mechanism as it is the first pentaradial structure that appears before metamorphosis and develops into the water vascular system of adults.

View Article and Find Full Text PDF

New specimens of Taeniogyrus japonicus (Marenzeller) were collected from Iwami coast and Sado island of the Sea of Japan. According to detailed observations of external and internal organs, we transferred T. japonicus, T.

View Article and Find Full Text PDF

Species retaining ancestral features, such as species called living fossils, are often regarded as less derived than their sister groups, but such discussions are usually based on qualitative enumeration of conserved traits. This approach creates a major barrier, especially when quantifying the degree of phenotypic evolution or degree of derivedness, since it focuses only on commonly shared traits, and newly acquired or lost traits are often overlooked. To provide a potential solution to this problem, especially for inter-species comparison of gene expression profiles, we propose a new method named "derivedness index" to quantify the degree of derivedness.

View Article and Find Full Text PDF

Crinoids are considered as the most basal extant echinoderms. They retain aboral nervous system with a nerve center, which has been degraded in the eleutherozoan echinoderms. To investigate the evolution of patterning of the nervous systems in crinoids, we examined temporal and spatial expression patterns of three neural patterning-related homeobox genes, six3, pax6, and otx, throughout the development of a feather star Anneissia japonica.

View Article and Find Full Text PDF

Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L.

View Article and Find Full Text PDF

After publication of Nakano et al. (2017) [1], the authors became aware of the fact that the new species-group name erected for the two specimens of a Japanese xenoturbellid species in the article is not available because Nakano et al. (2017) [1] does not meet the requirement of the amendment of Article 8.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized microCT imaging to analyze the internal features of this soft-bodied animal, uncovering a connection between the frontal pore and a glandular network, which could shed light on evolutionary traits shared with acoelomorphs.
  • * Findings indicate that characteristics like size and specific anatomical features may be ancestral to Xenoturbella, suggesting further study is needed to understand their evolutionary link to other groups, making this species significant for investigating the evolution of bilaterian traits.
View Article and Find Full Text PDF

The presence of an anteroposterior body axis is a fundamental feature of bilateria. Within this group, echinoderms have secondarily evolved pentameral symmetric body plans. Although all echinoderms present bilaterally symmetric larval stages, they dramatically rearrange their body axis and develop a pentaradial body plan during metamorphosis.

View Article and Find Full Text PDF

A new genus and new species of antedonid comatulid is described from southern Japan. Belonometra n. gen.

View Article and Find Full Text PDF

The stalked crinoid, Metacrinus rotundus, is one of the most basal extant echinoderms. Here, we show the expression patterns of Six3, Pax6, and Otx in the early development of M. rotundus.

View Article and Find Full Text PDF