Publications by authors named "Ainash Childebayeva"

The Huns appeared in Europe in the 370s, establishing an Empire that reshaped West Eurasian history. Yet until today their origins remain a matter of extensive debate. Traditional theories link them to the Xiongnu, the founders of the first nomadic empire of the Mongolian steppe.

View Article and Find Full Text PDF

The Caucasus and surrounding areas, with their rich metal resources, became a crucible of the Bronze Age and the birthplace of the earliest steppe pastoralist societies. Yet, despite this region having a large influence on the subsequent development of Europe and Asia, questions remain regarding its hunter-gatherer past and its formation of expansionist mobile steppe societies. Here we present new genome-wide data for 131 individuals from 38 archaeological sites spanning 6,000 years.

View Article and Find Full Text PDF

The ancient city of Chichén Itzá in Yucatán, Mexico, was one of the largest and most influential Maya settlements during the Late and Terminal Classic periods (AD 600-1000) and it remains one of the most intensively studied archaeological sites in Mesoamerica. However, many questions about the social and cultural use of its ceremonial spaces, as well as its population's genetic ties to other Mesoamerican groups, remain unanswered. Here we present genome-wide data obtained from 64 subadult individuals dating to around AD 500-900 that were found in a subterranean mass burial near the Sacred Cenote (sinkhole) in the ceremonial centre of Chichén Itzá.

View Article and Find Full Text PDF

The Eurasian Bronze Age (BA) has been described as a period of substantial human migrations, the emergence of pastoralism, horse domestication, and development of metallurgy. This study focuses on two north Eurasian sites sharing Siberian genetic ancestry. One of the sites, Rostovka, is associated with the Seima-Turbino (ST) phenomenon (~2200-1900 BCE) that is characterized by elaborate metallurgical objects found throughout Northern Eurasia.

View Article and Find Full Text PDF

With the beginning of the Early Bronze Age in Central Europe ~ 2200 BC, a regional and supra-regional hierarchical social organization emerged with few individuals in positions of power (chiefs), set apart by rich graves with extensive burial constructions. However, the social organization and stratification within the majority of people, who represent the non-elite, remain unclear. Here, we present genome-wide data of 46 individuals from the Early Bronze Age burial ground of Leubingen in today's Germany, integrating archaeological, genetic and strontium isotope data to gain new insights into Early Bronze Age societies.

View Article and Find Full Text PDF

Degraded DNA is used to answer questions in the fields of ancient DNA (aDNA) and forensic genetics. While aDNA studies typically center around human evolution and past history, and forensic genetics is often more concerned with identifying a specific individual, scientists in both fields face similar challenges. The overlap in source material has prompted periodic discussions and studies on the advantages of collaboration between fields toward mutually beneficial methodological advancements.

View Article and Find Full Text PDF

The Tyrolean Iceman is known as one of the oldest human glacier mummies, directly dated to 3350-3120 calibrated BCE. A previously published low-coverage genome provided novel insights into European prehistory, despite high present-day DNA contamination. Here, we generate a high-coverage genome with low contamination (15.

View Article and Find Full Text PDF

Social anthropology and ethnographic studies have described kinship systems and networks of contact and exchange in extant populations. However, for prehistoric societies, these systems can be studied only indirectly from biological and cultural remains. Stable isotope data, sex and age at death can provide insights into the demographic structure of a burial community and identify local versus non-local childhood signatures, archaeogenetic data can reconstruct the biological relationships between individuals, which enables the reconstruction of pedigrees, and combined evidence informs on kinship practices and residence patterns in prehistoric societies.

View Article and Find Full Text PDF

Archaeogenetic studies have described two main genetic turnover events in prehistoric western Eurasia: one associated with the spread of farming and a sedentary lifestyle starting around 7000-6000 BC (refs. ) and a second with the expansion of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. ).

View Article and Find Full Text PDF

The Early Bronze Age in Europe is characterized by social and genetic transformations, starting in the early 3rd millennium BCE. New settlement and funerary structures, artifacts and techniques indicate times of change with increasing economic asymmetries and political hierarchization. Technological advances in metallurgy also played an important role, facilitating trade and exchange networks, which became tangible in higher levels of mobility and connectedness.

View Article and Find Full Text PDF
Article Synopsis
  • The ability to adjust to changes in oxygen levels is crucial for survival, influencing both evolutionary biology and medical applications.
  • This study reviews how different species, including humans, have adapted to low oxygen conditions and how these adaptations relate to health issues like high-altitude sickness, heart and lung diseases, and sleep apnea.
  • The integration of multi-omics research helps to highlight connections between these adaptations and offers new insights for both fundamental and clinical studies on hypoxia.
View Article and Find Full Text PDF

Human expansion in the course of the Neolithic transition in western Eurasia has been one of the major topics in ancient DNA research in the last 10 years. Multiple studies have shown that the spread of agriculture and animal husbandry from the Near East across Europe was accompanied by large-scale human expansions. Moreover, changes in subsistence and migration associated with the Neolithic transition have been hypothesized to involve genetic adaptation.

View Article and Find Full Text PDF
Article Synopsis
  • - Sicily is important for studying agricultural changes in the Mediterranean, and new genomic and isotopic data from 19 prehistoric Sicilians spans from the Mesolithic to Bronze Age (10,700-4,100 yBP).
  • - Early Mesolithic hunter-gatherers in Sicily are genetically distinct from western European counterparts, while Late Mesolithic hunter-gatherers show about 20% ancestry from northern and eastern European groups, signaling significant genetic exchange.
  • - Early Neolithic farmers in Sicily have a strong genetic link to Balkan and Greek farmers, with only about 7% ancestry from local hunter-gatherers, reflecting shifts in culture and diet during these transition periods, though some interactions between hunter-gatherers and farmers occurred around
View Article and Find Full Text PDF
Article Synopsis
  • The transition to the Bronze Age in southeastern Iberia involved significant social shifts, including the abandonment of Late Copper Age settlements for hilltop sites and a change in burial practices from collective graves to individual ones, indicating a hierarchical society.
  • A genomic study was conducted that increased available data, revealing a turnover of Y-chromosome lineages and the introduction of steppe-related ancestry around 2200 cal BCE, correlating with the rise of the El Argar culture.
  • The findings suggest a founder effect in male lineages, as males had more relatives at burial sites compared to females, but more complex genetic models indicate possible earlier contributions from Mediterranean populations beyond the expected two-source models.
View Article and Find Full Text PDF

Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length.

View Article and Find Full Text PDF

The individual physiological response to high-altitude hypoxia involves both genetic and non-genetic factors, including epigenetic modifications. Epigenetic changes in hypoxia factor pathway (HIF) genes are associated with high-altitude acclimatization. However, genome-wide epigenetic changes that are associated with short-term hypoxia exposure remain largely unknown.

View Article and Find Full Text PDF

Background: Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm.

View Article and Find Full Text PDF

High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood.

View Article and Find Full Text PDF

Genetic and nongenetic factors are involved in the individual ability to physiologically acclimatize to high-altitude hypoxia through processes that include increased heart rate and ventilation. High-altitude acclimatization is thought to have a genetic component, yet it is unclear if other factors, such as epigenetic gene regulation, are involved in acclimatization to high-altitude hypoxia in nonacclimatized individuals. We collected saliva samples from a group of healthy adults of European ancestry (n = 21) in Kathmandu (1,400 m; baseline) and three altitudes during a trek to the Everest Base Camp: Namche (3,440 m; day 3), Pheriche (4,240 m; day 7), and Gorak Shep (5,160 m; day 10).

View Article and Find Full Text PDF

Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome.

View Article and Find Full Text PDF

Objectives: Differences in DNA methylation have been associated with early life adversity, suggesting that alterations in methylation function as one pathway through which adverse early environments are biologically embedded. This study examined associations between exposure to institutional care, quantified as the proportion of time in institutional care at specified follow-up assessment ages, and DNA methylation status in two stress-related genes: FKBP5 and SLC6A4.

Materials And Methods: We analyzed data from the Bucharest Early Intervention Project, which is a prospective study in which children reared in institutional settings were randomly assigned (mean age 22 months) to either newly created foster care or care as usual (to remain in their current placement) and prospectively followed.

View Article and Find Full Text PDF