: Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the gene. Type 1 Gaucher disease is characterised by substrate accumulation in the visceral organs, which occurs in combination with acute and chronic neurodegeneration that distinguish type 2 and type 3 GD, respectively. We have previously shown the efficacy of neonatal AAV9 gene therapy for treating type 2 GD and aimed to investigate post-symptomatic administration into a model of type 1 disease.
View Article and Find Full Text PDFHydrogels can provide a hydrated environment to encapsulate extracellular vesicles (EVs) while offering promising solutions to some of the challenges that limit their therapeutic potential, e.g. rapid clearance and propensity for enzymatic degradation and aggregation.
View Article and Find Full Text PDFThe most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2024
We sought to engineer mammalian cells to secrete nuclease activity as a step toward removing the need to purchase commercial nucleases as process additions in bioprocessing of AAV5 and AAV9 as gene therapy vectors. Engineering HeLa cells with a serratial nuclease transgene did not bring about nuclease activity in surrounding media whereas engineering serum-free, suspension-adapted HEK293F cells with a staphylococcal nuclease transgene did result in detectable nuclease activity in surrounding media of the resultant stable transfectant cell line, "NuPro-1S." When cultivated in serum-free media, NuPro-1S cells yielded 3.
View Article and Find Full Text PDFHypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE.
View Article and Find Full Text PDFWe engineered HEK293T cells with a transgene encoding tetracycline-inducible expression of a nuclease incorporating a translocation signal. We adapted the unmodified and nuclease-engineered cell lines to grow in suspension in serum-free media, generating the HEK293TS and NuPro-2S cell lines, respectively. Transient transfection yielded 1.
View Article and Find Full Text PDFHandb Exp Pharmacol
April 2024
In addition to proteins, discussed in the Chapter "Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules", there are a wide range of alternatives to small molecule active ingredients. Cells, extracellular vesicles, and nucleic acids in particular have attracted increasing research attention in recent years. There are now a number of products on the market based on these emerging technologies, the most famous of which are the mRNA-based vaccines against SARS-COV-2.
View Article and Find Full Text PDFInt J Mol Sci
July 2020
Niemann Pick disease type C (NPC) is a neurovisceral disorder due to mutations in or . This review focuses on poorly characterized clinical and molecular features of early infantile form of NPC (EIF) and identified 89 cases caused by (NPC1) and 16 by (NPC2) mutations. Extra-neuronal features were common; visceromegaly reported in 80/89 NPC1 and in 15/16 NPC2, prolonged jaundice in 30/89 NPC1 and 7/16 NPC2.
View Article and Find Full Text PDFThis scientific commentary refers to ‘Global CNS correction in a large brain model of human alpha-mannosidosis by intravascular gene therapy’, by Yoon (doi:10.1093/brain/awaa161).
View Article and Find Full Text PDFThe perinatal period represents a time of great vulnerability for the developing brain. A variety of injuries can result in death or devastating injury causing profound neurocognitive deficits. Hypoxic-ischemic neonatal encephalopathy (HIE) remains the leading cause of brain injury in term infants during the perinatal period with limited options available to aid in recovery.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2020
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene.
View Article and Find Full Text PDFHum Mol Genet
July 2020
The neuronal ceroid lipofuscinoses (NCLs), more commonly referred to as Batten disease, are a group of inherited lysosomal storage disorders that present with neurodegeneration, loss of vision and premature death. There are at least 13 genetically distinct forms of NCL. Enzyme replacement therapies and pre-clinical studies on gene supplementation have shown promising results for NCLs caused by lysosomal enzyme deficiencies.
View Article and Find Full Text PDFHeterozygous mutations of the lysosomal enzyme glucocerebrosidase (GBA1) represent the major genetic risk for Parkinson's disease (PD), while homozygous GBA1 mutations cause Gaucher disease, a lysosomal storage disorder, which may involve severe neurodegeneration. We have previously demonstrated impaired autophagy and proteasomal degradation pathways and mitochondrial dysfunction in neurons from GBA1 knockout (gba1) mice. We now show that stimulation with physiological glutamate concentrations causes pathological [Ca] responses and delayed calcium deregulation, collapse of mitochondrial membrane potential and an irreversible fall in the ATP/ADP ratio.
View Article and Find Full Text PDFInt J Mol Sci
September 2019
Fabry disease (FD) is caused by mutations in the gene that encodes lysosomal α-galactosidase-A (α-gal-A). A number of pathogenic mechanisms have been proposed and these include loss of mitochondrial respiratory chain activity. For FD, gene therapy is beginning to be applied as a treatment.
View Article and Find Full Text PDF