This paper presents a proof-of-concept method for classifying chemical compounds directly from NMR data without performing structure elucidation. This can help to reduce the time in finding good structure candidates, as in most cases matching must be done by a human engineer, or at the very least a process for matching must be meaningfully interpreted by one. The method identified as suitable for classification is a convolutional neural network (CNN).
View Article and Find Full Text PDFThere is an increasing focus on the part of academic institutions, funding agencies, and publishers, if not researchers themselves, on preservation and sharing of research data. Motivations for sharing include research integrity, replicability, and reuse. One of the barriers to publishing data is the extra work involved in preparing data for publication once a journal article and its supporting information have been completed.
View Article and Find Full Text PDFNMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods.
View Article and Find Full Text PDF