Publications by authors named "Agnieszka Jasztal"

Little is known, how life-long hyperlipidaemia affects vascular ageing, before atherosclerosis. Here, we characterise effects of mild, life-long hyperlipidaemia on age-dependent endothelial dysfunction (ED) in humanised dyslipidaemia model of E3L.CETP mice.

View Article and Find Full Text PDF

While the prevalence of cancer-associated thrombosis (CAT) is high in cancer patients, its molecular mechanisms have not been fully elucidated. Moreover, the risks of recurrent CAT events and mortality remain high in cancer patients despite the introduction of anticoagulant/antiplatelet therapy. Here, we discuss the possibility that increased plasmin activity driven by anticoagulant/antiplatelet treatment might be the major mechanism responsible for the activation of an excess of cancer-derived transforming growth factor-beta (TGF-β) originating from cancer cells and the tumour microenvironment.

View Article and Find Full Text PDF

Mitochondrial dysfunction and 12-lipoxygenase (ALOX12)-derived 12(S)-HETE production have been associated with vascular inflammation and the pathogenesis of atherosclerosis. However, the role of ALOX12 in regulating vascular energy metabolism in vascular inflammation has not been studied to date. Using mitochondrial and glycolysis functional profiling with the Seahorse extracellular flux analyzer, metabolipidomics, and proteomic analysis (LC-MS/MS), we characterized alterations in vascular energy metabolism in 2- and 6-month-old ApoE/LDLR vs.

View Article and Find Full Text PDF

Vascular ageing is associated with increased arterial stiffness and cardiovascular mortality that might be linked to altered vascular energy metabolism. The aim of this study was to establish a Seahorse XFe96 Analyzer-based methodology for the reliable, functional assessment of mitochondrial respiration and glycolysis in single murine aortic rings and to validate this functional assay by characterising alterations in vascular energy metabolism in aged mice. Healthy young and old C57BL/6 mice were used for the analyses.

View Article and Find Full Text PDF

Aim: Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice.

Methods: Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat.

View Article and Find Full Text PDF

Aim: Chronic heart failure (CHF) is often linked to liver malfunction and systemic endothelial dysfunction. However, whether cardio-hepatic interactions in heart failure involve dysfunction of liver sinusoidal endothelial cells (LSECs) is not known. Here we characterize LSECs phenotype in early and end stages of chronic heart failure in a murine model.

View Article and Find Full Text PDF

This study sought to develop noninvasive, in vivo imaging schemes that allow for quantitative assessment of pulmonary microvascular functional status based on the combination of pulmonary T mapping and dynamic contrast-enhanced (DynCE) imaging. Ultrashort-echo-time (UTE) imaging at 9.4 T of lung parenchyma was performed.

View Article and Find Full Text PDF

Age represents a major risk factor in heart failure (HF). However, the mechanisms linking ageing and HF are not clear. We aimed to identify the functional, morphological and transcriptomic changes that could be attributed to cardiac ageing in a model of slowly progressing HF in Tgαq*44 mice in reference to the cardiac ageing process in FVB mice.

View Article and Find Full Text PDF

Ageing is a major risk factor for cancer metastasis but the underlying mechanisms remain unclear. Here, we characterised ageing effects on cancer-induced endothelial-mesenchymal transition (EndMT) in the pulmonary circulation of female BALB/c mice in a metastatic 4T1 breast cancer model. The effect of intravenously injected 4T1 cells on pulmonary endothelium, pulmonary metastasis, lung tissue architecture, and systemic endothelium was compared between 40-week-old and 20-week-old mice.

View Article and Find Full Text PDF
Article Synopsis
  • - The buildup of lipid-filled foam cells in artery walls is key to atherosclerosis, but the mechanisms behind their formation are not fully understood.
  • - Research showed that inhibiting a specific cellular process called macropinocytosis in myeloid cells significantly reduced atherosclerotic lesions in mice, suggesting it plays a crucial role in lipid accumulation.
  • - Enhanced imaging techniques demonstrated that macropinocytosis is responsible for the uptake of various lipoproteins in foam cells, highlighting a potential new therapeutic strategy to address atherosclerosis and related heart diseases.
View Article and Find Full Text PDF

Activation of the coagulation cascade favours metastatic spread, but antithrombotic therapy might also have detrimental effects on cancer progression. In this study, we characterized the effects of dabigatran, a direct reversible thrombin inhibitor, on the pulmonary endothelial barrier and metastatic spread in a murine model of breast cancer metastasis. Dabigatran etexilate (100 mg kg) was administered to mice twice daily by oral gavage.

View Article and Find Full Text PDF

Endothelial dysfunction is one of the hallmarks of vascular abnormalities in metabolic diseases and has been repeatedly demonstrated in coronary and peripheral circulation in mice fed high-fat diet (HFD), particularly after long-term HFD. However, the temporal relationship between development of coronary microvascular endothelial dysfunction and deterioration in diastolic and systolic cardiac function after short-term feeding with HFD has not yet been studied. This study aimed to correlate the changes in coronary microvascular endothelial function and global cardiac performance indices in vivo after short-term feeding with HFD in mice.

View Article and Find Full Text PDF

Angiotensin II (Ang II) induces hypertension and endothelial dysfunction, but the involvement of thrombin in these responses is not clear. Here, we assessed the effects of the inhibition of thrombin activity by dabigatran on Ang II-induced hypertension and endothelial dysfunction in mice with a particular focus on NO- and 20-HETE-dependent pathways. As expected, dabigatran administration significantly delayed thrombin generation (CAT assay) in Ang II-treated hypertensive mice, and interestingly, it prevented endothelial dysfunction development, but it did not affect elevated blood pressure nor excessive aortic wall thickening.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD ) is crucial for cell energy metabolism and many signalling processes. Recently, we proved the role of ecto-enzymes in controlling adenine nucleotide-dependent pathways during calcific aortic valve disease (CAVD). This study aimed to investigate extracellular hydrolysis of NAD and mononucleotide nicotinamide (NMN) in aortic valves and aorta fragments of CAVD patients and on the inner aortic surface of ecto-5'-nucleotidase knockout mice (CD73-/-).

View Article and Find Full Text PDF

Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO) and nitrate (NO) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO and NO co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension.

View Article and Find Full Text PDF

Monocyte chemoattractant protein-induced protein 1 (MCPIP1, alias Regnase 1) is a negative regulator of inflammation, acting through cleavage of transcripts coding for proinflammatory cytokines and by inhibition of NFκB activity. Moreover, it was demonstrated that MCPIP1 regulates lipid metabolism both in adipose tissue and in hepatocytes. In this study, we investigated the effects of tissue-specific Mcpip1 deletion on the regulation of hepatic metabolism and development of nonalcoholic fatty liver disease (NAFLD).

View Article and Find Full Text PDF

Primary biliary cholangitis (PBC) is an autoimmune disease characterized by progressive destruction of the intrahepatic bile ducts. The immunopathology of PBC involves excessive inflammation; therefore, negative regulators of inflammatory response, such as Monocyte Chemoattractant Protein-1-Induced Protein-1 (MCPIP1) may play important roles in the development of PBC. The aim of this work was to verify whether Mcpip1 expression protects against development of PBC.

View Article and Find Full Text PDF

The current understanding of mechanisms underlying the formation of metastatic tumors has required multi-parametric methods. The tissue micro-environment in secondary organs is not easily evaluated due to complex interpretation with existing tools. Here, we demonstrate the detection of structural modifications in proteins using emerging Fourier Transform Infrared (FTIR) imaging combined with light polarization.

View Article and Find Full Text PDF

Background Long-term feeding with a high-fat diet (HFD) induces endothelial dysfunction in mice, but early HFD-induced effects on endothelium have not been well characterized. Methods and Results Using an magnetic resonance imaging-based methodology that allows characterization of endothelial function in vivo, we demonstrated that short-term (2 weeks) feeding with a HFD to mice or to mice resulted in the impairment of acetylcholine-induced response in the abdominal aorta (AA), whereas, in the thoracic aorta (TA), the acetylcholine-induced response was largely preserved. Similarly, HFD resulted in arterial stiffness in the AA, but not in the TA.

View Article and Find Full Text PDF

Lungs, due to their high oxygen availability and vascularization, are an ideal environment for cancer cell migration, metastasis and tumour formation. These processes are directly connected with extracellular matrix (ECM) remodelling, resulting from cancer cell infiltration and preparation of the environment suitable for tumour growth. Herein, we compare the potential of fast, label-free and non-destructive methods of Fourier-transform infrared spectroscopy (FT-IR) in standard and high definition (HD) modes with nonlinear coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), two-photon excited fluorescence (TPEF) and a fluorescence lifetime imaging (FLIM) technique for lung metastasis detection.

View Article and Find Full Text PDF

Long-term administration of acetylsalicylic acid (ASA) was effective in prevention of colorectal cancer, whereas the efficacy of this compound in other cancer types, including breast cancer, has been less convincingly documented. Indeed, the antimetastatic effect of low-dose ASA was observed only in the early intravascular phase of metastasis of breast cancer. In the present work, we characterized the effects of long-term treatment with ASA on the late phase of pulmonary metastasis in a mouse orthotopic 4T1 breast cancer model.

View Article and Find Full Text PDF

In fertilized fish eggs, lipids are an energy reservoir for the embryo development and substrate for organogenesis. They occur in the cytoplasmic area and form lipid droplets (LDs), but also the yolk egg is composed of lipids and proteins. Insight on the LD formation and distribution and their interactions with other cellular organelles could provide information about the role based on the egg development.

View Article and Find Full Text PDF

This work focused on a detailed assessment of lung tissue affected by metastasis of breast cancer. We used large-area chemical scanning implemented in Fourier transform infrared (FTIR) spectroscopic imaging supported with classical histological and morphological characterization. For the first time, we differentiated and defined biochemical changes due to metastasis observed in the lung parenchyma, atelectasis, fibrous, and muscle cells, as well as bronchi ciliate cells, in a qualitative and semi-quantitative manner based on spectral features.

View Article and Find Full Text PDF

A new type of aggregate, formed in human red blood cells (RBCs) in response to glutaraldehyde treatment, was discovered and analyzed with the classical and advanced biomolecular imaging techniques. Advanced Heinz body-like aggregates (AHBA) formed in a single human RBC are characterized by a higher level of hemoglobin (Hb) degradation compared to typical Heinz bodies, which consist of hemichromes. The complete destruction of the porphyrin structure of Hb and the aggregation of the degraded proteins in the presence of Fe ions are observed.

View Article and Find Full Text PDF