Achieving efficient pure-red emission in perovskite-based high-definition display applications remains challenging due to persistent spectral, thermodynamic, and operational instability. Although significant progress has been made using red-emitting quasi-2D perovskites, quantum dots, and mixed-halide perovskites, their performance under operational conditions often remains limited. Here, we address these challenges by embedding mixed-halide perovskite nanocrystals (PeNCs) into a polymer matrix to create a donor-acceptor architecture.
View Article and Find Full Text PDFMixed iodide-bromide methylammonium lead perovskite (MAPbIBr) nanocrystals (NCs) hold promise for use in light-emitting applications owing to the size- and composition-tunability of their bandgap. However, the segregation of halides during light exposure causes their band gaps to become unstable and narrow. Here, we use transient absorption spectroscopy to track excited-state dynamics during photoinduced halide segregation.
View Article and Find Full Text PDFThe deposition of tin sulfide (SnS) nanostructured films using a continuous spray pyrolysis technique is reported with an electric field present at the nozzle for influencing the atomization and the subsequent film deposition. In the absence of the electric field, the X-ray diffraction pattern shows the orthorhombic phase of SnS with a crystallographic preferred orientation along the (040) plane. The application of the electric field results in significant improvement in the morphology and a reduction in surface roughness (28 nm from 37 nm).
View Article and Find Full Text PDFWe investigate the charge transport physics of a previously unidentified class of electron-deficient conjugated polymers that do not contain any single bonds linking monomer units along the backbone but only double-bond linkages. Such polymers would be expected to behave as rigid rods, but little is known about their actual chain conformations and electronic structure. Here, we present a detailed study of the structural and charge transport properties of a family of four such polymers.
View Article and Find Full Text PDFLead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent-approaching those of commercial organic light-emitting diodes-have been demonstrated in both the infrared and the green emission channels. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized.
View Article and Find Full Text PDFNature
November 2020
The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission, optoelectronics, photon frequency conversion and photocatalysis. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling or tuning of the singlet-triplet energy splitting via molecular design.
View Article and Find Full Text PDFPerovskite light-emitting diodes (PeLEDs) based on three-dimensional (3D) polycrystalline perovskites suffer from ion migration, which causes overshoot of luminance over time during operation and reduces its operational lifetime. Here, we demonstrate 3D/2D hybrid PeLEDs with extremely reduced luminance overshoot and 21 times longer operational lifetime than 3D PeLEDs. The luminance overshoot ratio of 3D/2D hybrid PeLED is only 7.
View Article and Find Full Text PDFPrecise control of the microstructure in organic semiconductors (OSCs) is essential for developing high-performance organic electronic devices. Here, a comprehensive charge transport characterization of two recently reported rigid-rod conjugated polymers that do not contain single bonds in the main chain is reported. It is demonstrated that the molecular design of the polymer makes it possible to achieve an extended linear backbone structure, which can be directly visualized by high-resolution scanning tunneling microscopy (STM).
View Article and Find Full Text PDFOptoelectronic devices based on conjugated polymers often rely on multilayer device architectures, as it is difficult to design all the different functional requirements, in particular the need for efficient luminescence and fast carrier transport, into a single polymer. Here we study the photophysics of a recently discovered class of conjugated polymers with high charge carrier mobility and low degree of energetic disorder and investigate whether it is possible in this system to achieve by molecular design a high photoluminescence quantum yield without sacrificing carrier mobility. Tracing exciton dynamics over femtosecond to microsecond time scales, we show that nearly all nonradiative exciton recombination arises from interactions between chromophores on different chains.
View Article and Find Full Text PDFMixed-halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution-processed triple-cation mixed-halide (Cs MA FA )Pb(Br I ) perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar-equivalent illumination. It is found that the illumination leads to localized surface sites of iodide-rich perovskite intermixed with passivating PbI material.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2019
Metal halide perovskites are actively pursued as photoelectrodes to drive solar fuel synthesis. However, currently, these photocathodes suffer from limited stability in water, which hampers their practical application. Here, we report a high-performance solution-processable photocathode composed of cesium formamidinium methylammonium triple-cation lead halide perovskite protected by an Al-doped ZnO (AZO) layer combined with a Field's metal encapsulation.
View Article and Find Full Text PDFEfficient conjugated polymer optoelectronic devices benefit from concomitantly high luminescence and high charge carrier mobility. This is difficult to achieve, as interchain interactions, which are needed to ensure efficient charge transport, tend also to reduce radiative recombination and lead to solid-state quenching effects. Many studies detail strategies for reducing these interactions to increase luminescence, or modifying chain packing motifs to improve percolation charge transport; however achieving these properties together has proved elusive.
View Article and Find Full Text PDFCharge transport in conjugated polymer semiconductors has traditionally been thought to be limited to a low-mobility regime by pronounced energetic disorder. Much progress has recently been made in advancing carrier mobilities in field-effect transistors through developing low-disorder conjugated polymers. However, in diodes these polymers have to date not shown much improved mobilities, presumably reflecting the fact that in diodes lower carrier concentrations are available to fill up residual tail states in the density of states.
View Article and Find Full Text PDFOne source of instability in perovskite solar cells (PSCs) is interfacial defects, particularly those that exist between the perovskite and the hole transport layer (HTL). We demonstrate that thermally evaporated dopant-free tetracene (120 nm) on top of the perovskite layer, capped with a lithium-doped Spiro-OMeTAD layer (200 nm) and top gold electrode, offers an excellent hole-extracting stack with minimal interfacial defect levels. For a perovskite layer interfaced between these graded HTLs and a mesoporous TiO electron-extracting layer, its photoluminescence yield reaches 15% compared to 5% for the perovskite layer interfaced between TiO and Spiro-OMeTAD alone.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
By varying the concentration of a solvent additive, we demonstrate the modulation of intermolecular (donor/acceptor (D/A) interface) and intramolecular (bulk) disorder in blends of the low-band gap polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4 H-cyclopental[2,1- b;3,4- b']-dithiophene)- alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) blended with [6,6]-phenyl-C-butyric acid methyl ester (PCBM). Using the solvent additive concentration of 1,8-diiodooctane (DIO) in the host-processing solvent, the disorder in the bulk and at the interface is studied in terms of Urbach energy, electroluminescence (EL) broadening, and EL quantum efficiency (EL). The Urbach energy varies from 80 to 39 meV for bulk and 39 to 51 meV for D/A interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
Organic-inorganic perovskite solar cells have attracted significant attention due to their remarkable performance. The use of alternative metal-oxide charge-transport layers is a strategy to improving device reliability for large-scale fabrication and long-term applications. Here, we report solution-processed perovskite solar cells employing nickel oxide hole-extraction layers produced in situ using an atmospheric pressure spatial atomic-layer deposition system, which is compatible with high-throughput processing of electronic devices from solution.
View Article and Find Full Text PDFCdSe/CdTe core-crown type-II nanoplatelet heterostructures are two-dimensional semiconductors that have attracted interest for use in light-emitting technologies due to their ease of fabrication, outstanding emission yields, and tunable properties. Despite this, the exciton dynamics of these complex materials, and in particular how they are influenced by phonons, is not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and temperature-dependent structural measurements to investigate CdSe/CdTe nanoplatelets with a thickness of four monolayers.
View Article and Find Full Text PDFWe report the formation of robust, reproducible, pinhole-free, thin layers of fluorinated polyfluorene conjugated copolymers on a range of polymeric underlayers via a simple solution processing method. This is driven by the different characters of the fluorinated and nonfluorinated sections of these polymers. Photothermal deflection spectroscopy is used to determine that these layers are 1-2 nm thick, corresponding to a molecularly thin layer.
View Article and Find Full Text PDFThe exploration of a wide range of molecular structures has led to the development of high-performance conjugated polymer semiconductors for flexible electronic applications including displays, sensors, and logic circuits. Nevertheless, many conjugated polymer field-effect transistors (OFETs) exhibit nonideal device characteristics and device instabilities rendering them unfit for industrial applications. These often do not originate in the material's intrinsic molecular structure, but rather in external trap states caused by chemical impurities or environmental species such as water.
View Article and Find Full Text PDFThe highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (). Here we report a strategy to reduce nonradiative recombination for the inverted devices, based on a simple solution-processed secondary growth technique. This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in by up to 100 millivolts.
View Article and Find Full Text PDFWe report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb. We investigate the chemical distribution and electronic structure of solution processed CHNHPbI perovskite structures containing Na, Cu, and Ag, which are lower valence metal ions than Pb but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag containing perovskite structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2018
Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order.
View Article and Find Full Text PDFWe have achieved high-efficiency polycrystalline perovskite light-emitting diodes (PeLEDs) based on formamidinium (FA) and cesium (Cs) mixed cations without quantum dot synthesis. Uniform single-phase FACs PbBr polycrystalline films were fabricated by one-step formation with various FA:Cs molar proportions; then the influences of chemical composition on film morphology, crystal structure, photoluminescence (PL), and electroluminescence (EL) were systematically investigated. Incorporation of Cs cations in FAPbBr significantly reduced the average grain size (to 199 nm for FA:Cs = 90:10) and trap density; these changes consequently increased PL quantum efficiency (PLQE) and PL lifetime of FACs PbBr films and current efficiency (CE) of PeLEDs.
View Article and Find Full Text PDFState-of-the-art light-emitting diodes (LEDs) are made from high-purity alloys of III-V semiconductors, but high fabrication cost has limited their widespread use for large area solid-state lighting. Here, efficient and stable LEDs processed from solution with tunable color enabled by using phase-pure 2D Ruddlesden-Popper (RP) halide perovskites with a formula (CH (CH ) NH ) (CH NH ) Pb I are reported. By using vertically oriented thin films that facilitate efficient charge injection and transport, efficient electroluminescence with a radiance of 35 W Sr cm at 744 nm with an ultralow turn-on voltage of 1 V is obtained.
View Article and Find Full Text PDF