Cell Death Dis
January 2023
The semaphorin guidance factors receptor plexin-A2 transduces sema6A and sema6B signals and may mediate, along with plexin-A4, the anti-angiogenic effects of sema6A. When associated with neuropilins plexin-A2 also transduces the anti-angiogenic signals of sema3B. Here we show that inhibition of plexin-A2 expression in glioblastoma derived cells that express wild type p53 such as U87MG and A172 cells, or in primary human endothelial cells, strongly inhibits cell proliferation.
View Article and Find Full Text PDFBackground: Glycogen storage disease type 1b (GSD1b) is an ultra-rare autosomal recessive disorder, caused by mutations in gene. Affected patients present with episodes of fasting hypoglycemia and lactic acidosis, hepatomegaly, growth retardation, hyperlipidemia and renal impairment. In addition, patients present neutropenia, neutrophil dysfunction and oral, and skin infections as well as a significant predisposition to develop inflammatory bowel disease (IBD).
View Article and Find Full Text PDFJ Autoimmun
January 2023
CD72 is a regulatory co-receptor on B cells, with a role in the pathogenesis of systemic lupus erythematosus (SLE) in both human and animal models. Semaphorin3A (sema3A) is a secreted member of the semaphorin family that can reconstruct B cells' regulatory functions by upregulating IL-10 expression and inhibiting the pro-inflammatory activity of B and T cells in autoimmune diseases. The aim of our present study was to identify a new ligand for CD72, namely sema3A, and exploring the signal transduction pathways following its ligation in B cells.
View Article and Find Full Text PDFBackground: The immune regulatory properties of semaphorin3A (sema3A) (both innate and adaptive) are well established in many studies. The injection of sema3A into a mice model of rheumatoid arthritis was proven to be highly beneficial, both in attenuating clinical symptoms and in decreasing inflammatory mechanisms.
Objectives: This study was designed in order to assess the possible therapeutic benefits of sema3A following its injection into female NZB/W mice.
J Cell Sci
December 2014
Class 3 semaphorins are anti-angiogenic and anti-tumorigenic guidance factors that bind to neuropilins, which, in turn, associate with class A plexins to transduce semaphorin signals. To study the role of the plexin-A2 receptor in semaphorin signaling, we silenced its expression in endothelial cells and in glioblastoma cells. The silencing did not affect Sema3A signaling, which depended on neuropilin-1, plexin-A1 and plexin-A4, but completely abolished Sema3B signaling, which also required plexin-A4 and one of the two neuropilins.
View Article and Find Full Text PDFClass-3 semaphorins are secreted axon guidance factors. Some of these semaphorins have recently been characterized as suppressors of tumor progression. To determine if class-3 semaphorins can be used to inhibit the development of glioblastoma-multiforme tumors, we expressed recombinant sema-3A, 3B, 3D, 3E, 3F or 3G in U87MG glioblastoma cells.
View Article and Find Full Text PDFThe semaphorins were initially described as axon guidance factors, but have recently been implicated in a variety of physiological and developmental functions, including regulation of immune response, angiogenesis, and migration of neural crest cells. The semaphorin family contains more than 30 genes divided into seven subfamilies, all of which are characterized by the presence of a sema domain. The semaphorins transduce their signals by binding to one of the nine receptors belonging to the plexin family, or, in the case of the class 3 semaphorins, by binding to one of the two neuropilin receptors.
View Article and Find Full Text PDFGap junctions form intercellular channels that mediate metabolic and electrical signaling between neighboring cells in a tissue. Lack of an atomic resolution structure of the gap junction has made it difficult to identify interactions that stabilize its transmembrane domain. Using a recently computed model of this domain, which specifies the locations of each amino acid, we postulated the existence of several interactions and tested them experimentally.
View Article and Find Full Text PDFConnexins are a family of transmembrane proteins that form gap junctions between adjacent cells and allow intercellular communication. Connexin proteins are involved in pathological conditions in humans, mainly in hearing loss, neurodegenerative disorders and skin diseases. The association between connexin proteins and the inner ear is well established.
View Article and Find Full Text PDF