Chromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene implicated in tumor progression, multidrug resistance, and metastasis in many types of cancer. In this article, we described the optimization of the first lead CHD1L inhibitors (CHD1Li) through drug design and medicinal chemistry. More than 30 CHD1Li were synthesized and evaluated using a variety of colorectal cancer (CRC) tumor organoid models and functional assays.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a driving force in promoting malignant cancer, including initiation, growth, and metastasis. EMT is a dynamic process that can undergo a mesenchymal-epithelial transition (MET) and partial transitions between both phenotypes, termed epithelial-mesenchymal plasticity (EMP). In cancer, the acquisition of EMP results in a spectrum of phenotypes, promoting tumor cell heterogeneity and resistance to standard of care therapy.
View Article and Find Full Text PDFSince the discovery of CHD1L in 2008, it has emerged as an oncogene implicated in the pathology and poor prognosis of a variety of cancers, including gastrointestinal cancers. However, a mechanistic understanding of CHD1L as a driver of colorectal cancer has been limited. Until now, there have been no reported inhibitors of CHD1L, also limiting its development as a molecular target.
View Article and Find Full Text PDFRecently, we characterized neoamphimedine (neo) as an ATP-competitive inhibitor of the ATPase domain of human Topoisomerase IIα. Thus far, neo is the only pyridoacridine with this mechanism of action. One limiting factor in the development of neo as a therapeutic agent has been access to sufficient amounts of material for biological testing.
View Article and Find Full Text PDFβ-Glucogallin (BGG), a major component of the Emblica officinalis medicinal plant, is a potent and selective inhibitor of aldose reductase (AKR1B1). New linkages (ether/triazole/amide) were introduced via high yielding, efficient syntheses to replace the labile ester, and an original two-step (90%) preparation of BGG was developed. Inhibition of AKR1B1was assessed in vitro and using transgenic lens organ cultures, which identified the amide linked glucoside (BGA) as a stable, potent, and selective therapeutic lead toward the treatment of diabetic eye disease.
View Article and Find Full Text PDFType IIα DNA topoisomerase (TopoIIα) is among the most important clinical drug targets for the treatment of cancer. Recently, the DNA repair protein Metnase was shown to enhance TopoIIα activity and increase resistance to TopoIIα poisons. Using in vitro DNA decatenation assays we show that neoamphimedine potently inhibits TopoIIα-dependent DNA decatenation in the presence of Metnase.
View Article and Find Full Text PDF