Publications by authors named "Acacio Aparecido Navarrete"

The soil microbiome, a crucial component of agricultural ecosystems, plays a pivotal role in crop production and ecosystem functioning. However, its response to traditional tillage systems in potato cultivation in the Peruvian highlands is still far from understood. Here, ecological and functional aspects of the bacterial community were analyzed based on soil samples from two traditional tillage systems: 'chiwa' (minimal tillage) and 'barbecho' (full tillage), in the Huanuco region of the Peruvian central Andes.

View Article and Find Full Text PDF

We evaluated the co-occurrence of archaeal taxonomic groups and soil physicochemical characteristics in relation to the structuring of the archaeal community in Amazonian soil under different land use systems. Soil samples were collected in primary forest (PF), secondary forest (SF), agricultural systems (AG) and cattle pastures (PA). Archaeal community composition was revealed based on high-throughput amplicon sequencing of the 16S rRNA gene.

View Article and Find Full Text PDF

Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources.

View Article and Find Full Text PDF

Iron is an essential mineral and one of the most abundant in soils, presenting itself in the environment as ferrous and ferric ions. As each oxidation state of iron has a different role in the environment, its speciation in environmental studies is important. The determination of ferrous iron received great attention from soil chemists because of its important role in agriculture, in redox processes, and as an electron acceptor in the catalysis of organic matter.

View Article and Find Full Text PDF

Here we describe a suite of methods to identify potential taxonomic and functional soil microbial indicators of soil quality and plant health in biofuel crops in various areas and land types. This approach draws on tools to assess microbial diversity, greenhouse gas fluxes, and soil physicochemical properties in bioenergy cropping systems. Integrative statistical models are then used to identify potential microbial indicators for sustainable management of bioenergy crops.

View Article and Find Full Text PDF

We aimed to evaluate the selectivity of entomopathogenic fungi to larvae of (Neuroptera: Chrysopidae). For this purpose, (strain ESALQ PL63), (strain ESALQ E9) and (strain UFMS 03) were assessed at different concentrations (1 × 10, 1 × 10 and 1 × 10 conidia mL). The control treatment consisted of distilled water and Tween80 0.

View Article and Find Full Text PDF

The interactions between soil properties, microorganisms, plant species and climate affect cadmium (Cd) availability in tropical soils. In this study, we investigated the effects of simulated summer and winter conditions on Cd fractionation and bacterial communities in Oxisols and on growth of two high biomass production-grasses (Brachiaria decumbens and Panicum maximum) that were evaluated for their Cd phytoextraction potential. We also assessed how these interactions could influence the availability of Cd and its possible phytoextraction by these grasses.

View Article and Find Full Text PDF

Acidobacteria is a predominant bacterial phylum in tropical agricultural soils, including sugarcane cultivated soils. The increased need for fertilizers due to the expansion of sugarcane production is a threat to the ability of the soil to maintain its potential for self-regulation in the long term, in witch carbon degradation has essential role. In this study, a culture-independent approach based on high-throughput DNA sequencing and microarray technology was used to perform taxonomic and functional profiling of the Acidobacteria community in a tropical soil under sugarcane ( spp.

View Article and Find Full Text PDF

The use of organic amendments is important for the sustainability of organic farming, with implications for soil organic matter turnover, nutrient cycling and greenhouse gases (GHGs) emissions to the atmosphere. Here, we investigated how long-term citrus organic farming influenced carbon sequestration and GHG emissions under organic and conventional management. We assessed the effects of management systems on soil organic matter dynamics and GHG emissions, focusing on NO direct emissions from fertilizers.

View Article and Find Full Text PDF

Microbes constitute about a third of the Earth's biomass and are composed by an enormous genetic diversity. In a majority of environments the microbial communities play crucial roles for the ecosystem functioning, where a drastic biodiversity alteration or loss could lead to negative effects on the environment and sustainability. A central goal in microbiome studies is to elucidate the relation between microbial diversity to functions.

View Article and Find Full Text PDF

Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil.

View Article and Find Full Text PDF

Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.

View Article and Find Full Text PDF

This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB.

View Article and Find Full Text PDF

Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata).

View Article and Find Full Text PDF

This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes.

View Article and Find Full Text PDF