Proc Natl Acad Sci U S A
May 2025
Cancers are shaped by somatic mutations, microenvironment, and patient background, each altering gene expression and regulation in complex ways, resulting in heterogeneous cellular states and dynamics. Inferring gene regulatory networks (GRNs) from expression data can help characterize this regulation-driven heterogeneity, but network inference requires many statistical samples, limiting GRNs to cluster-level analyses that ignore intracluster heterogeneity. We propose to move beyond coarse analyses of predefined subgroups by using contextualized learning, a multitask learning paradigm that uses multiview contexts including phenotypic, molecular, and environmental information to infer personalized models.
View Article and Find Full Text PDFVirtual screening of small molecules against protein targets can accelerate drug discovery and development by predicting drug-target interactions (DTIs). However, structure-based methods like molecular docking are too slow to allow for broad proteome-scale screens, limiting their application in screening for off-target effects or new molecular mechanisms. Recently, vector-based methods using protein language models (PLMs) have emerged as a complementary approach that bypasses explicit 3D structure modeling.
View Article and Find Full Text PDFNatural products have long been a rich source of diverse and clinically effective drug candidates. Non-ribosomal peptides (NRPs), polyketides (PKs), and NRP-PK hybrids are three classes of natural products that display a broad range of bioactivities, including antibiotic, antifungal, anticancer, and immunosuppressant activities. However, discovering these compounds through traditional bioactivity-guided techniques is costly and time-consuming, often resulting in the rediscovery of known molecules.
View Article and Find Full Text PDF