Breast cancer positive for human epidermal growth factor receptor-2 (HER2) is challenging to treat due to the development of drug resistance, even with recently developed antibody-mediated therapeutics. However, nanotechnology provides new innovative therapeutic strategies. This study evaluates the efficacy of new HER2-targeted, pH-sensitive poly(ethylene glycol)-poly(L-histidine) copolymer micelles (PEG-PHis micelles), either empty, loaded with the drug doxorubicin (DOX), or the fluorophore Rhodamine-B (RB) for imaging purposes.
View Article and Find Full Text PDFBackground: The therapeutic impact of beta-blockers (BB), beta-adrenergic receptor antagonists, on prostate cancer remains controversial. The underlying health conditions of BB users complicate the ability to isolate and evaluate the specific effects of these drugs on the tumour cells. This study investigated whether BBs, by inhibiting sympathetic nerve signalling, extended the duration of androgen deprivation therapy (ADT) effectiveness in patients with de novo metastatic hormone sensitive prostate cancer and in prostate cancer xenograft models, while also uncovering the molecular mechanisms involved.
View Article and Find Full Text PDFBackground: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect.
View Article and Find Full Text PDFLiver X receptors (LXRs) are nuclear transcription factors important in the regulation of cholesterol transport, and glucose and fatty acid metabolism. The antiproliferative role of LXRs has been studied in a variety of malignancies and may represent a therapeutic opportunity in cancers lacking targeted therapies, such as triple-negative breast cancer. In this study, we investigated the impact of LXR agonists alone and in combination with carboplatin in preclinical models of breast cancer.
View Article and Find Full Text PDFWe have investigated the biodistribution and tumor macrophage infiltration after intravenous injection of the poly(alkyl cyanoacrylate) nanoparticles (NPs): PEBCA (poly(2-ethyl-butyl cyanoacrylate), PBCA (poly(n-butyl cyanoacrylate), and POCA (poly(octyl cyanoacrylate), in mice. These NPs are structurally similar, have similar PEGylation, and have previously been shown to give large variations in cellular responses in vitro. The PEBCA NPs had the highest uptake both in the patient-derived breast cancer xenograft MAS98.
View Article and Find Full Text PDFLipid nanocapsules (LNCs) have proven their efficacy in delivering different drugs to various cancers, but no studies have yet described their uptake mechanisms, paclitaxel (PTX) delivery or resulting cytotoxicity towards breast cancer cells. Herein, we report results concerning cellular uptake of LNCs and cytotoxicity studies of PTX-loaded LNCs (LNCs-PTX) on the three breast cancer cell lines MCF-7, MDA-MB-231 and MDA-MB-468. LNCs-PTX of sizes 50 ± 2 nm, 90 ± 3 nm and 120 ± 4 nm were developed by the phase inversion method.
View Article and Find Full Text PDFMany promising pharmaceutically active compounds have low solubility in aqueous environments and their encapsulation into efficient drug delivery vehicles is crucial to increase their bioavailability. Lipodisq nanoparticles are approximately 10 nm in diameter and consist of a circular phospholipid bilayer, stabilized by an annulus of SMA (a hydrolysed copolymer of styrene and maleic anhydride). SMA is used extensively in structural biology to extract and stabilize integral membrane proteins for biophysical studies.
View Article and Find Full Text PDFIn this study we have developed biodegradable polymeric nanoparticles (NPs) containing the cytostatic drugs mertansine (MRT) or cabazitaxel (CBZ). The NPs are based on chitosan (CS) conjugate polymers synthesized with different amounts of the photosensitizer tetraphenylchlorin (TPC). These TPC-CS NPs have high loading capacity and strong drug retention due to π-π stacking interactions between the drugs and the aromatic photosensitizer groups of the polymers.
View Article and Find Full Text PDFInt J Nanomedicine
November 2019
Background: Reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, trigger biodegradation of polymer-based nanoparticles (NPs) bearing pinacol-type boronic ester groups. These NPs may selectively release their cargo, in this case paclitaxel (PTX), at the high levels of ROS present in the intracellular environment of inflamed tissues and most tumors.
Purpose: The main objective was to determine anti-tumor efficacy of PTX-loaded ROS-sensitive NPs and to examine whether macrophage infiltration had any impact on treatment efficacy.
The effect of poly(2-ethyl-butyl cyanoacrylate) nanoparticles containing the cytotoxic drug cabazitaxel was studied in three breast cancer cell lines and one basal-like patient-derived xenograft model grown in the mammary fat pad of immunodeficient mice. Nanoparticle-encapsulated cabazitaxel had a much better efficacy than similar concentrations of free drug in the basal-like patient-derived xenograft and resulted in complete remission of 6 out of 8 tumors, whereas free drug gave complete remission only with 2 out of 9 tumors. To investigate the different efficacies obtained with nanoparticle-encapsulated versus free cabazitaxel, mass spectrometry quantification of cabazitaxel was performed in mice plasma and selected tissue samples.
View Article and Find Full Text PDFThe study aims to investigate whether cytosolic fatty acid-binding protein-4 (FABP4) is involved in angiogenic growth factors- and fatty acid-induced tube formation in first trimester placental trophoblast cells, HTR8/SVneo. We determined the tube formation both at basal as well as stimulated levels in the absence and presence of inhibitors of FABP4 and VEGF signaling pathways. Basal level of tube formation was maximally reduced in the presence of 50 µM of FABP4 inhibitor compared with those by VEGF signaling pathway inhibitors (rapamycin, L-NAME, and p38 MAP kinase inhibitor).
View Article and Find Full Text PDFBackground: Natural killer (NK) cells have both cytolytic and immunoregulatory functions. We recently described that these cells release the inflammatory cytokines IL-17 and IFN-γ. However, the precise identity of the NK cell subset(s) that secrete these cytokines is not known.
View Article and Find Full Text PDF