An effective, noninvasive glucose monitoring technology could be a pivotal factor for addressing the major unmet needs for managing diabetes mellitus (DM). Here, we describe a skin-worn, disposable, wireless electrochemical biosensor for extended noninvasive monitoring of glucose in the interstitial fluid (ISF). The wearable platform integrates three components: a screen-printed iontophoretic electrode system for ISF extraction by reverse iontophoresis (RI), a printed three-electrode amperometric glucose biosensor, and an electronic interface for control and wireless communication.
View Article and Find Full Text PDFChem Soc Rev
November 2020
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients.
View Article and Find Full Text PDFSens Actuators B Chem
October 2019
Rapid, on-site detection of fentanyl is of critical importance, as it is an extremely potent synthetic opioid that is prone to abuse. Here we describe a wearable glove-based sensor that can detect fentanyl electrochemically on the fingertips towards decentralized testing for opioids. The glove-based sensor consists of flexible screen-printed carbon electrodes modified with a mixture of multiwalled carbon nanotubes and a room temperature ionic liquid, 4-(3-butyl-1-imidazolio)-1-butanesulfonate).
View Article and Find Full Text PDFWearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse.
View Article and Find Full Text PDFRecent advances in wearable sensor technologies offer new opportunities for improving dietary adherence. However, despite their tremendous promise, the potential of wearable chemical sensors for guiding personalized nutrition solutions has not been reported. Herein, we present an epidermal biosensor aimed at following the dynamics of sweat vitamin C after the intake of vitamin C pills and fruit juices.
View Article and Find Full Text PDFDiabetic ketoacidosis (DKA), a severe complication of diabetes mellitus with potentially fatal consequences, is characterized by hyperglycemia and metabolic acidosis due to the accumulation of ketone bodies, which requires people with diabetes to monitor both glucose and ketone bodies. However, despite major advances in diabetes management mainly since the emergence of new-generation continuous glucose monitoring (CGM) devices capable of in vivo monitoring of glucose directly in the interstitial fluid (ISF), the continuous monitoring of ketone bodies is yet to be addressed. Here, we present the first use of a real-time continuous ketone bodies monitoring (CKM) microneedle platform.
View Article and Find Full Text PDFThe increasing prevalence of fentanyl and its analogues as contaminating materials in illicit drug products presents a major hazard to first responder and law enforcement communities. Electrochemical techniques have the potential to provide critical information to these personnel via rapid, facile field detection of these materials. Here we demonstrate the use of cyclic square wave voltammetry (CSWV) with screen-printed carbon electrodes (SPCE), modified with the room temperature ionic liquid (RTIL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [CCpyrr][NTf], toward such rapid "on-the-spot" fentanyl detection.
View Article and Find Full Text PDFIn this Account, we detail recent progress in wearable bioelectronic devices and discuss the future challenges and prospects of on-body noninvasive bioelectronic systems. Bioelectronics is a fast-growing interdisciplinary research field that involves interfacing biomaterials with electronics, covering an array of biodevices, encompassing biofuel cells, biosensors, ingestibles, and implantables. In particular, enzyme-based bioelectronics, built on diverse biocatalytic reactions, offers distinct advantages and represents a centerpiece of wearable biodevices.
View Article and Find Full Text PDFThe development of wearable biosensors for continuous noninvasive monitoring of target biomarkers is limited to assays of a single sampled biofluid. An example of simultaneous noninvasive sampling and analysis of two different biofluids using a single wearable epidermal platform is demonstrated here. The concept is successfully realized through sweat stimulation (via transdermal pilocarpine delivery) at an anode, alongside extraction of interstitial fluid (ISF) at a cathode.
View Article and Find Full Text PDFRapid and precise analytical tools are essential for monitoring food safety and screening of any undesirable contaminants, allergens, or pathogens, which may cause significant health risks upon consumption. Substantial developments in analytical techniques have empowered the analyses and quantitation of these contaminants. However, conventional techniques are limited by delayed analysis times, expensive and laborious sample preparation, and the necessity for highly-trained workers.
View Article and Find Full Text PDFFlexible epidermal tattoo and textile-based electrochemical biosensors have been developed for vapor-phase detection of organophosphorus (OP) nerve agents. These new wearable sensors, based on stretchable organophosphorus hydrolase (OPH) enzyme electrodes, are coupled with a fully integrated conformal flexible electronic interface that offers rapid and selective square-wave voltammetric detection of OP vapor threats and wireless data transmission to a mobile device. The epidermal tattoo and textile sensors display a good reproducibility (with RSD of 2.
View Article and Find Full Text PDFA flexible glove-based electrochemical biosensor with highly stretchable printed electrode system has been developed as a wearable point-of-use screening tool for defense and food security applications. This disposable-mechanically robust "lab-on-a-glove" integrates a stretchable printable enzyme-based biosensing system and active surface for swipe sampling on different fingers, and is coupled with a compact electronic interface for electrochemical detection and real-time wireless data transmission to a smartphone device. Stress-enduring inks are used to print the electrode system and the long serpentine connections to the wireless electronic interface.
View Article and Find Full Text PDFThe impact of polymer-film morphology on the electron-transfer process at electrode/organic insulator/nanomaterial architectures is studied. The experimental data are discussed in the context of the most recent theory modelling the nanoparticle-mediated electron-transfer process at electrode/insulator/nanomaterial architectures proposed by Chazalviel and Allongue [J. Am.
View Article and Find Full Text PDFThe phenomenon of nanoparticles attached to an electrode passivated by an organic layer allowing efficient electron transfer between redox species in solution and the underlying electrode to be restored has resulted in Chazalviel and Allongue proposing a theory [Chazalviel, J.-N.; Allongue, P.
View Article and Find Full Text PDF