Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFTherapeutic targeting of the adenosine deaminase ADAR has great potential in cancer and other indications; however, it remains unclear what approach can enable effective and selective therapeutic inhibition. Herein, we conduct multi-staged guide RNA screening and identify high efficiency Cas9 guide RNAs to enable a CRISPR/Cas-based approach for ADAR knockout. Through characterization in human primary immune cell systems we observe similar activity with two-part guide RNA and single guide RNA, dose responsive activity, similar guide activity rank order across different cell types, and favorable computational off-target profiles of candidate guide RNAs.
View Article and Find Full Text PDFGenetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2018
Upon activation, the epidermal growth factor receptor (EGFR) phosphorylates tyrosine residues in its cytoplasmic tail, which triggers the binding of Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains and initiates downstream signaling. The sequences flanking the tyrosine residues (referred to as "phosphosites") must be compatible with phosphorylation by the EGFR kinase domain and the recruitment of adapter proteins, while minimizing phosphorylation that would reduce the fidelity of signal transmission. To understand how phosphosite sequences encode these functions within a small set of residues, we carried out high-throughput mutational analysis of three phosphosite sequences in the EGFR tail.
View Article and Find Full Text PDFT cell activation by antigens binding to the T cell receptor (TCR) must be properly regulated to ensure normal T cell development and effective immune responses to pathogens and transformed cells while avoiding autoimmunity. The Src family kinase Lck and the Syk family kinase ZAP-70 (ζ chain-associated protein kinase of 70 kD) are sequentially activated in response to TCR engagement and serve as critical components of the TCR signaling machinery that leads to T cell activation. We performed a mass spectrometry-based phosphoproteomic study comparing the quantitative differences in the temporal dynamics of phosphorylation in stimulated and unstimulated T cells with or without inhibition of ZAP-70 catalytic activity.
View Article and Find Full Text PDFTrends Biochem Sci
October 2014
The activation of receptor tyrosine kinases in response to extracellular signals is a principal component of metazoan signaling. Structural analysis of the extracellular and intracellular domains of these receptors has shed substantial light on the mechanisms underlying their activation. A remaining challenge is to understand how these domains operate together in the context of the full-length receptors.
View Article and Find Full Text PDFClamp loaders load sliding clamps onto primer-template DNA. The structure of the E. coli clamp loader bound to DNA reveals the formation of an ATP-dependent spiral of ATPase domains that tracks only the template strand, allowing recognition of both RNA and DNA primers.
View Article and Find Full Text PDF