Back-support exoskeletons (BSEs) have the potential to reduce physical demands during many occupational tasks, but their effectiveness in flooring work remains underexplored. Eighteen participants performed simulated floor tiling work under three intervention conditions (HeroWear Apex™ = HW, Laevo Flex™ = LV, and no device = ND), across two tile sizes (small vs. large), and two task types (tiling vs.
View Article and Find Full Text PDFUnlabelled: Occupational exoskeletons (EXOs) have received growing attention as a new ergonomic intervention to reduce physical demands in various industries (e.g., manufacturing, logistics, construction, and agriculture).
View Article and Find Full Text PDFExoskeletons (EXOs) are a promising wearable intervention to reduce work-related musculoskeletal disorder risks among construction workers. However, the adoption of EXOs may differ with demographic characteristics. Survey data (n = 361) were collected from construction industry stakeholders and a summation score method was used to summarize respondent's benefits and barriers to EXO use, along with perceptions and readiness to use.
View Article and Find Full Text PDFWork-related musculoskeletal disorders (WMSDs) are a major health concern in the construction industry. Occupational exoskeletons (EXOs) are a promising ergonomic intervention to help reduce WMSD risk. Their adoption, however, has been low in construction.
View Article and Find Full Text PDFArm-support exoskeletons (ASEs) are an emerging technology with the potential to reduce physical demands during diverse tasks, especially overhead work. However, limited information is available about the effects of different ASE designs during overhead work with diverse task demands. Eighteen participants (gender-balanced) performed lab-based simulations of a pseudo-static overhead task.
View Article and Find Full Text PDF