4 results match your criteria: "Environmental Engineering"
Nat Water
March 2025
Department of Chemical Engineering, Imperial College London, London, UK.
Membrane-based separation processes hold great promise for sustainable extraction of lithium from brines for the rapidly expanding electric vehicle industry and renewable energy storage. However, it remains challenging to develop high-selectivity membranes that can be upscaled for industrial processes. Here we report solution-processable polymer membranes with subnanometre pores with excellent ion separation selectivity in electrodialysis processes for lithium extraction.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
Human health is being threatened by environmental microplastic (MP) pollution. MPs were detected in the bloodstream and multiple tissues of humans, disrupting the regular physiological processes of organs. Nanoscale plastics can breach the blood-brain barrier, leading to neurotoxic effects.
View Article and Find Full Text PDFNature
June 2018
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA.
A growing network of ice cores reveals the past 800,000 years of Antarctic climate and atmospheric composition. The data show tight links among greenhouse gases, aerosols and global climate on many timescales, demonstrate connections between Antarctica and distant locations, and reveal the extraordinary differences between the composition of our present atmosphere and its natural range of variability as revealed in the ice core record. Further coring in extremely challenging locations is now being planned, with the goal of finding older ice and resolving the mechanisms underlying the shift of glacial cycles from 40,000-year to 100,000-year cycles about a million years ago, one of the great mysteries of climate science.
View Article and Find Full Text PDFNature
March 2015
Pacific Northwest National Laboratory, Fundamental and Computational Sciences, 902 Battelle Boulevard, Richland, Washington 99354, USA.
The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing, calculated as the difference between estimates of the Earth's radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.
View Article and Find Full Text PDF