53 results match your criteria: "Fraunhofer Institute for Chemical Technology[Affiliation]"

Background: Quantification cycle (Cq) and amplification efficiency (AE) are parameters mathematically extracted from raw data to characterize quantitative PCR (qPCR) reactions and quantify the copy number in a sample. Little attention has been paid to the effects of preprocessing and the use of smoothing or filtering approaches to compensate for noisy data. Existing algorithms largely are taken for granted, and it is unclear which of the various methods is most informative.

View Article and Find Full Text PDF

Nutrient resorption from senescing photosynthetic organs is a powerful mechanism for conserving nitrogen (N) and phosphorus (P) in infertile environments. Evolution has resulted in enhanced differentiation of conducting tissues to facilitate transport of photosynthate to other plant parts, ultimately leading to phloem. Such tissues may also serve to translocate N and P to other plant parts upon their senescence.

View Article and Find Full Text PDF

Fast, reliable and inexpensive analytical techniques for trace detection of explosive components are in high demand. Our approach is to develop specific sensor coating materials based on molecularly imprinted polymers (MIPs). Despite the known inhibition of radical polymerisations by nitro groups and the known shrinkage of the polymer lattice during/after drying we were able to synthesize particulate MIPs by suspension polymerisation as well as thin MIP coatings by direct surface polymerisation on quartz crystal microbalances (QCM).

View Article and Find Full Text PDF