237 results match your criteria: "Fraunhofer Institute for Algorithms and Scientific Computing[Affiliation]"

As one of the leading causes for dementia in the population, it is imperative that we discern exactly why Alzheimer's disease (AD) has a strong molecular association with beta-amyloid and tau. Although a clear understanding about etiology and pathogenesis of AD remains unsolved, scientists worldwide have dedicated significant efforts to discovering the molecular interactions linked to the pathological characteristics and potential treatments. Knowledge representations, such as domain ontologies encompassing our current understanding about AD, could greatly assist and contribute to disease research.

View Article and Find Full Text PDF

Objectives: Knowledge graphs and ontologies in the biomedical domain provide rich contextual knowledge for a variety of challenges. Employing that for knowledge-driven NLP tasks such as gene-disease association prediction represents a promising way to increase the predictive power of a model.

Methods: We investigated the power of infusing the embedding of two aligned ontologies as prior knowledge to the NLP models.

View Article and Find Full Text PDF
Article Synopsis
  • Using a combination of disease ontology, text mining, and statistical analysis, researchers compiled a list of COVID-19 symptoms to build a foundation for analysis.
  • By employing machine learning techniques on Google search and Twitter data, they created a long-short-term memory (LSTM) model that effectively predicted increases in confirmed cases and hospitalizations up to 14 days in advance, achieving high accuracy scores.
View Article and Find Full Text PDF

Recently, the use of machine-learning (ML) models for pharmacokinetic (PK) modeling has grown significantly. Although most of the current approaches use ML techniques as black boxes, there are only a few that have proposed interpretable architectures which integrate mechanistic knowledge. In this work, we use as the test case a one-compartment PK model using a scientific machine learning (SciML) framework and consider learning an unknown absorption using neural networks, while simultaneously estimating other parameters of drug distribution and elimination.

View Article and Find Full Text PDF

Adverse drug events constitute a major challenge for the success of clinical trials. Several computational strategies have been suggested to estimate the risk of adverse drug events in preclinical drug development. While these approaches have demonstrated high utility in practice, they are at the same time limited to specific information sources.

View Article and Find Full Text PDF

Background: A relevant part of the genetic architecture of complex traits is still unknown; despite the discovery of many disease-associated common variants. Polygenic risk score (PRS) models are based on the evaluation of the additive effects attributable to common variants and have been successfully implemented to assess the genetic susceptibility for many phenotypes. In contrast, burden tests are often used to identify an enrichment of rare deleterious variants in specific genes.

View Article and Find Full Text PDF

We present a modular framework for generating synthetic power grids that consider the heterogeneity of real power grid dynamics but remain simple and tractable. This enables the generation of large sets of synthetic grids for a wide range of applications. For the first time, our synthetic model also includes the major drivers of fluctuations on short-time scales and a set of validators that ensure the resulting system dynamics are plausible.

View Article and Find Full Text PDF

Efficient data sharing is hampered by an array of organizational, ethical, behavioral, and technical challenges, slowing research progress and reducing the utility of data generated by clinical research studies on neurodegenerative diseases. There is a particular need to address differences between public and private sector environments for research and data sharing, which have varying standards, expectations, motivations, and interests. The Neuronet data sharing Working Group was set up to understand the existing barriers to data sharing in public-private partnership projects, and to provide guidance to overcome these barriers, by convening data sharing experts from diverse projects in the IMI neurodegeneration portfolio.

View Article and Find Full Text PDF

The Innovative Medicines Initiative (IMI), was a European public-private partnership (PPP) undertaking intended to improve the drug development process, facilitate biomarker development, accelerate clinical trial timelines, improve success rates, and generally increase the competitiveness of European pharmaceutical sector research. Through the IMI, pharmaceutical research interests and the research agenda of the EU are supported by academic partnership and financed by both the pharmaceutical companies and public funds. Since its inception, the IMI has funded dozens of research partnerships focused on solving the core problems that have consistently obstructed the translation of research into clinical success.

View Article and Find Full Text PDF

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems.

View Article and Find Full Text PDF

Spatial patterns of white matter hyperintensities: a systematic review.

Front Aging Neurosci

May 2023

Computational Neuroradiology, Department of Neuroradiology, University Hospital Bonn, Bonn, Germany.

Background: White matter hyperintensities are an important marker of cerebral small vessel disease. This disease burden is commonly described as hyperintense areas in the cerebral white matter, as seen on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging data. Studies have demonstrated associations with various cognitive impairments, neurological diseases, and neuropathologies, as well as clinical and risk factors, such as age, sex, and hypertension.

View Article and Find Full Text PDF

In addition to vaccines, the World Health Organization sees novel medications as an urgent matter to fight the ongoing COVID-19 pandemic. One possible strategy is to identify target proteins, for which a perturbation by an existing compound is likely to benefit COVID-19 patients. In order to contribute to this effort, we present GuiltyTargets-COVID-19 ( https://guiltytargets-covid.

View Article and Find Full Text PDF

Quality diversity algorithms can be used to efficiently create a diverse set of solutions to inform engineers' intuition. But quality diversity is not efficient in very expensive problems, needing hundreds of thousands of evaluations. Even with the assistance of surrogate models, quality diversity needs hundreds or even thousands of evaluations, which can make its use infeasible.

View Article and Find Full Text PDF

Motivation: Epilepsy is a multifaceted complex disorder that requires a precise understanding of the classification, diagnosis, treatment and disease mechanism governing it. Although scattered resources are available on epilepsy, comprehensive and structured knowledge is missing. In contemplation to promote multidisciplinary knowledge exchange and facilitate advancement in clinical management, especially in pre-clinical research, a disease-specific ontology is necessary.

View Article and Find Full Text PDF

With SCAview, we present a prompt and comprehensive tool that enables scientists to browse large datasets of the most common spinocerebellar ataxias intuitively and without technical effort. Basic concept is a visualization of data, with a graphical handling and filtering to select and define subgroups and their comparison. Several plot types to visualize all data points resulting from the selected attributes are provided.

View Article and Find Full Text PDF

Force field-based models are a Newtonian mechanics approximation of reality and are inherently noisy. Coupling models from different molecular scale domains (including single, gas-phase molecules up to multimolecule, condensed phase ensembles) is difficult, which is also the case for finding solutions that transfer well between the scales. In this contribution, we introduce a surrogate-assisted algorithm to optimize Lennard-Jones parameters for target data from different scale domains to overcome the difficulties named above.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by a long prodromal phase with a multitude of markers indicating an increased PD risk prior to clinical diagnosis based on motor symptoms. Current PD prediction models do not consider interdependencies of single predictors, lack differentiation by subtypes of prodromal PD, and may be limited and potentially biased by confounding factors, unspecific assessment methods and restricted access to comprehensive marker data of prospective cohorts. We used prospective data of 18 established risk and prodromal markers of PD in 1178 healthy, PD-free individuals and 24 incident PD cases collected longitudinally in the Tübingen evaluation of Risk factors for Early detection of NeuroDegeneration (TREND) study at 4 visits over up to 10 years.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) exhibits a wide variety of symptoms and progression speeds, complicating the creation of effective treatment trials.
  • By clustering patients based on their progression patterns using AI, researchers identified distinct groups with varying symptoms and treatment responses.
  • This research enhances the understanding of PD's heterogeneity and suggests specific biological mechanisms and genetic factors that could explain differences among patient subgroups.
View Article and Find Full Text PDF
Article Synopsis
  • Modeling biological mechanisms is essential for understanding diseases like Alzheimer's; however, challenges arise due to limited knowledge of biochemical processes and data collection difficulties.
  • The study introduces iVAMBN, a method that combines clinical and gene expression data with a knowledge graph to create a quantitative model for simulating the effects of down-expressing the drug target CD33.
  • Validation shows strong agreement between predicted molecular changes and experimental data, suggesting this modeling approach can effectively identify promising drug targets for Alzheimer's treatment.
View Article and Find Full Text PDF

The anticipation of progression of Alzheimer's disease (AD) is crucial for evaluations of secondary prevention measures thought to modify the disease trajectory. However, it is difficult to forecast the natural progression of AD, notably because several functions decline at different ages and different rates in different patients. We evaluate here AD Course Map, a statistical model predicting the progression of neuropsychological assessments and imaging biomarkers for a patient from current medical and radiological data at early disease stages.

View Article and Find Full Text PDF

Initial Crystallization Effects in Coarse-Grained Polyethylene Systems After Uni- and Biaxial Stretching in Blow-Molding Cooling Scenarios.

Polymers (Basel)

November 2022

Institute of Technology, Resource and Energy-Efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.

This study investigates the initial stage of the thermo-mechanical crystallization behavior for uni- and biaxially stretched polyethylene. The models are based on a mesoscale molecular dynamics approach. We take constraints that occur in real-life polymer processing into account, especially with respect to the blowing stage of the extrusion blow-molding process.

View Article and Find Full Text PDF

Integrative analysis to identify shared mechanisms between schizophrenia and bipolar disorder and their comorbidities.

Prog Neuropsychopharmacol Biol Psychiatry

March 2023

Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany; Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin, Keral

Schizophrenia and bipolar disorder are characterized by highly similar neuropsychological signatures, implying shared neurobiological mechanisms between these two disorders. These disorders also have comorbidities, such as type 2 diabetes mellitus (T2DM). To date, an understanding of the mechanisms that mediate the link between these two disorders remains incomplete.

View Article and Find Full Text PDF

The COVID-19 pandemic has highlighted the lack of preparedness of many healthcare systems against pandemic situations. In response, many population-level computational modeling approaches have been proposed for predicting outbreaks, spatiotemporally forecasting disease spread, and assessing as well as predicting the effectiveness of (non-) pharmaceutical interventions. However, in several countries, these modeling efforts have only limited impact on governmental decision-making so far.

View Article and Find Full Text PDF

Objective: Healthcare data such as clinical notes are primarily recorded in an unstructured manner. If adequately translated into structured data, they can be utilized for health economics and set the groundwork for better individualized patient care. To structure clinical notes, deep-learning methods, particularly transformer-based models like , have recently received much attention.

View Article and Find Full Text PDF