98%
921
2 minutes
20
Cadmium (Cd) is a toxic heavy metal that can penetrate the blood-brain barrier, leading to harmful effects on the nervous system by disrupting the brain's antioxidant defense mechanisms. This research investigates how camphor, a natural compound recognized for its antioxidant effects, influences biochemical, molecular, and histological alterations in the hippocampus of rats exposed to cadmium. It also assesses its influence on the spatial memory abilities of these animals. Adult male Wistar rats were divided into four groups, each containing 10 rats: Control, Camphor, Cd, and Cd + Camphor. Cadmium chloride (5 mg/kg, orally) and camphor (10 mg/kg, intraperitoneally) were administered for 21 consecutive days. The findings revealed that treatment with camphor resulted in elevated levels of GSH, improved activities of SOD and GPx, and reduced MDA levels in the hippocampus of rats exposed to cadmium chloride. Moreover, camphor decreased the expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, while increasing the expression of IL-10. In addition, camphor diminished mRNA and protein amounts of NF-κB in the hippocampus and reduced neuronal death in the CA1 area. It decreased the expression and activity of acetylcholinesterase, enhanced the expression of BDNF and the alpha-7 nicotinic acetylcholine receptor in the hippocampus, and caused a significant improvement in spatial memory. We conclude that camphor enhanced spatial memory in rats exposed to cadmium chloride by alleviating oxidative stress, reducing neuroinflammation, and preventing neuronal loss. It plays a vital role in protecting the hippocampus by lowering NF-κB expression and boosting acetylcholine signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-025-04807-7 | DOI Listing |
Anesthesiology
September 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida.
Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).
View Article and Find Full Text PDFClin Orthop Relat Res
September 2025
Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.
View Article and Find Full Text PDFCan Vet J
September 2025
Emergency and Critical Care Department, New River Veterinary Specialists, 600 Argent Boulevard, Hardeeville, South Carolina 29927, USA (Graeber); Emergency and Critical Care Department, Veterinary Emergency and Critical Care, 8650 W. Tropicana Avenue B107, Las Vegas, Nevada 89147, USA (Weatherton).
Our objective was to describe a case of suspected relay barbiturate intoxication of a dog after ingestion of a rat that had been euthanized and frozen and then later burned in an attempted cremation. This case will be compared to previous reports of relay toxicosis. This report describes a dog that was presented to an emergency and critical care hospital because of lethargy and vomiting after ingesting remains of a rat that had been euthanized 2 wk earlier.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
School of Public Health, Key Laboratory of Special Environmental and Health Research, Xinjiang Medical University, Urumqi, China.
Humans' exposure to arsenic (As) has been associated with the development of various diseases. Some health effects may be mediated by arsenic-induced toxicity to the thyroid and endocrine systems, but its underlying mechanisms remain unclear. The overall aim of our study was focused on using sodium arsenite (NaAsO)-exposed rats to investigate the involvement of the phosphatidylinositol 3-kinase (PI3K) and transcription factor NF-E2-related factor 2 (Nrf2) pathways in toxicity to the thyroid and endocrine systems.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
Early-life experiences shape neural networks, with heightened plasticity during the so-called "sensitive periods" (SP). SP are regulated by the maturation of GABAergic parvalbumin-positive (PV+) interneurons, which become enwrapped by perineuronal nets (PNNs) over time, modulating SP closure. Additionally, the opening and closing of SP are orchestrated by two distinct gene clusters known as "trigger" and "brake".
View Article and Find Full Text PDF