98%
921
2 minutes
20
Aging is associated with a decline in liver function, which increases the risk of age-related metabolic disorders. Calorie restriction (CR) counteracts age-related changes in the liver; however, the underlying molecular mechanism remains elusive. In this study, we integrated transcriptomic, bioinformatic, and molecular analyses to investigate the effects of aging and CR on age-related gene expression in the rat liver, focusing on the interplay between the circadian rhythm and lipid metabolism. Our results revealed aging-induced upregulation of , a key circadian repressor, and downregulation of , accompanied by decreased expression of fatty acid oxidation genes and increased expression of lipogenic genes. CR attenuated these age-related changes and restored circadian rhythm-related gene expression. Furthermore, we demonstrated that overexpression inhibited PPARα binding to peroxisome proliferator response elements (PPRE), resulting in decreased fatty acid oxidation gene expression. Our findings suggest that age-related dysregulation of contributes to impaired lipid metabolism in liver aging, and CR may exert its beneficial effects by modulating the interaction between NR1D1 and PPARα. This study provides novel insights into the molecular mechanisms linking circadian rhythms and lipid metabolism in hepatic aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339034 | PMC |
http://dx.doi.org/10.18632/aging.206289 | DOI Listing |
Int J Gen Med
September 2025
Department of Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200035, People's Republic of China.
Objective: This study aims to investigate the association between the dynamics of routine metabolic markers and endometriosis severity.
Methods: A retrospective analysis was conducted on patients diagnosed with endometriosis at Zhongshan Hospital, Xiamen, affiliated with Fudan University. The collected data encompassed demographic details and biochemical indicators related to lipid, hepatobiliary, renal metabolism, and electrolyte balance.
Mol Ther Methods Clin Dev
June 2025
Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, Hunan 410060, P.R. China.
S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFFront Nutr
August 2025
Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, China.
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, with abdominal fat, particularly visceral fat, closely associated with its onset and progression. While the lipid accumulation product (LAP) has been linked to COPD risk, it is not sufficient to fully reflect the level of visceral fat. In contrast, the body roundness index (BRI), a more accurate measure of abdominal fat distribution, has not been fully explored in relation to COPD.
View Article and Find Full Text PDF