A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ultra-fast liquid chromatography detection of β-N-methylamine-l-alanine and its isomers in cycad seeds and cyanobacterial symbionts for neurotoxic risk assessment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cyanobacterial neurotoxin has been implicated in various neurological disorders, posing a potential global health risk. Initial studies revealed alarming levels of β-N-methylamine-l-alanine (BMAA) in cyanobacteria, particularly in symbiotic species, suggesting widespread exposure. This study aimed to validate the efficacy of ultra-fast liquid chromatography (UFLC) technique for the detection and quantification of BMAA in various samples. Derivatizing agents, including 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and N-(2-aminoethyl) glycine (AEG), were synthesized and confirmed via nuclear magnetic resonance (NMR) spectroscopy to enhance the detection of isomeric neurotoxic compounds. Among the samples analyzed cycad seeds, leaves, male cones, cyanobacterial symbionts, coralloid roots, and processed cycad seed flour BMAA and its isomers (2,4-diaminobutyric acid (2,4-DAB) and AEG) were detected in cycad seeds, cyanobacterial symbionts, and coralloid roots. The retention times for L-BMAA, AEG, and 2,4-DAB were 5.4, 5.6, and 6.1 min, respectively. Quantification revealed lower levels of these toxic isomers in seeds compared to high levels in cyanobacterial symbionts. Furthermore, UFLC methods effectively reduced the levels of neurotoxic compounds in cycad seeds to below detectable limits (6 × 10 ng/mL). This study underscores the utility of UFLC method combined with derivatization for the efficient detection and separation of L-BMAA and its isomers, providing a reliable approach for neurotoxin analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2025.115503DOI Listing

Publication Analysis

Top Keywords

cycad seeds
16
cyanobacterial symbionts
16
ultra-fast liquid
8
liquid chromatography
8
seeds cyanobacterial
8
neurotoxic compounds
8
symbionts coralloid
8
coralloid roots
8
cycad
5
seeds
5

Similar Publications