98%
921
2 minutes
20
Trans-2-hexenal (HX) is a potent antimicrobial which can be reversibly stabilised in chitosan (CS) films forming α,β-unsaturated imines. The hydrolysis of the imines promoted by acid environments triggers the release of HX to the media exerting its antimicrobial activity. It is known that besides imines, the electrophilic β-alkene carbon of HX can form Michael adducts with primary amino groups of chitosan. However, the formation of nucleophile-C bonds is undesired since these bonds are barely hydrolysed and limit the release of HX and by hence, the effectivity of the film. Thus, the aim of this work has been to optimise the formation of trans-2-hexenal-imine-chitosan films employing response surface methodology in order to favour the formation of conjugated imines avoiding Michael adducts. The optimisation of the reaction parameters indicated that synthesis temperature of 10 °C and without the use of an acid catalyst favours the formation of conjugated imines. Spectroscopic techniques, elemental analysis and swelling behaviour in various media were used to characterise the optimised films. The release kinetics of HX and the antimicrobial activity of the films were also studied. The present work provided relevant information to increase the antimicrobial efficacy of trans-2-hexenal-imine-chitosan films for the development of active food packaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.143303 | DOI Listing |
Org Biomol Chem
September 2025
Division of Chemistry and Chemical Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
In an attempt to react aminocyclopropenones with cyclic imines in order to synthesise amido-substituted pyrrolizidine natural products, we found that aminocyclopropenones undergo a previously unreported stereospecific and regiospecific catalyst-free, thermal ring-opening reaction with alcohols to yield β-enamino esters (also known as vinylogous carbamates or aminoacrylates). We report 21 examples in 45 to 97% isolated yield. The reaction occurs nucleophilic attack at the cyclopropenone carbonyl followed by regiospecific ring opening of the cyclopropenone with retention of alkene geometry.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, United Kingdom.
The development of copper-catalyzed C-H functionalization processes is challenging due to the inefficiency of conventional chemical oxidants in regenerating the copper catalyst. This study details the development of a mediated electrosynthetic approach involving triple catalytic cycles in transient C-H functionalization to achieve efficient copper-catalyzed C-(sp)-H sulfonylation of benzylamines with sodium sulfinate salts. The triple catalytic system consists of a copper organometallic cycle for C-H functionalization, an aldehyde transient directing group (TDG) as an organocatalyst for imine formation, and a ferrocenium salt as an electrocatalyst.
View Article and Find Full Text PDFChem Sci
September 2025
Institut für Organische Chemie, Universitat Würzburg 97074 Würzburg Germany
The reversible covalent bond formation that underpins dynamic covalent chemistry (DCC) enables the construction of stimuli-responsive systems and the efficient assembly of complex architectures. While most DCC studies have focused on systems at thermodynamic equilibrium, there is growing interest in systems that operate away from equilibrium-either by shifting to a new free-energy landscape in response to a stimulus, or by accessing an out-of-equilibrium state following an energy input. Imine-based systems are especially attractive due to the accessibility of their building blocks and their dynamic behavior in both condensation and transimination reactions.
View Article and Find Full Text PDF