Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Sesaminol is an organic compound that shows the strong antioxidant, anti-inflammatory and neuroprotective properties. Sesaminol triglucoside (STG) is a glycosylated form of sesaminol and abundantly exists in sesame seeds. However, typical β-glucosidases could not deglycosylate STG probably due to its bulky aglycone. PSTG1 and 2 are β-glucosidases lately isolated from Paenibacillis sp. KB0459 and have the capacity to deglycosylate STG. A recent report by Yanai et al. (J. Biochem. 2023; 174:335-344) revealed the unique domain architecture of PSTG1. Apart from other β-glucosdasies in the GH3 family, PSTG1 has a novel accessary domain (domain 4) at the C-terminus. Domain 4 contributes to the dimer formation and is located close to the active site. Interestingly, several hydrophobic residues are exposed, suggesting that this domain may recognize the hydrophobic aglycone of STG. The physiological functions of the non-catalytic domains in glyco-enzymes are sometimes overlooked. This paper sheds light on the aglycone recognition by novel accessary domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvae094 | DOI Listing |