Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The cannabinoid CB receptor (CB) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺-coupled receptor mediates the effects of Δ-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and β-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺ family and β-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of β-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺ family, and between G protein subtypes and β-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards β-arrestin 1 when compared with G⍺). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB, rather than biased agonism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2024.116052 | DOI Listing |