Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Transcutaneous vagus nerve stimulation (VNS) showed early evidence of efficacy for the gait treatment of Parkinson's disease (PD).

Objectives: Providing data on neurophysiological and clinical effects of transauricular VNS (taVNS).

Methods: Ten patients with recording deep brain stimulation (DBS) have been enrolled in a within participant design pilot study, double-blind crossover sham-controlled trial of taVNS. Subthalamic local field potentials (β band power), Unified Parkinson's Disease Rating Scales (UPDRS), and a digital timed-up-and-go test (TUG) were measured and compared with real versus sham taVNS during medication-off/DBS-OFF condition.

Results: The left taVNS induced a reduction of the total β power in the contralateral (ie, right) subthalamic nucleus and an improvement of TUG time, speed, and variability. The taVNS-induced β reduction correlated with the improvement of gait speed. No major clinical changes were observed at UPDRS.

Conclusions: taVNS is a promising strategy for the management of PD gait, deserving prospective trials of chronic neuromodulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615838PMC
http://dx.doi.org/10.1002/mds.29690DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
contralateral subthalamic
8
left vagus
4
vagus stimulation
4
stimulation modulates
4
modulates contralateral
4
subthalamic power
4
power improving
4
gait
4
improving gait
4

Similar Publications

Subthalamic deep brain stimulation (STN-DBS) provides unprecedented spatiotemporal precision for the treatment of Parkinson's disease (PD), allowing for direct real-time state-specific adjustments. Inspired by findings from optogenetic stimulation in mice, we hypothesized that STN-DBS can mimic dopaminergic reinforcement of ongoing movement kinematics during stimulation. To investigate this hypothesis, we delivered DBS bursts during particularly fast and slow movements in 24 patients with PD.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) often presents with lateralized motor symptoms at onset, reflecting asymmetric degeneration of the substantia nigra (SN). Neuromelanin (NM) loss and iron accumulation are hallmarks of SN pathology in PD, but their spatial distribution and interrelationship in PD patients with right-sided (PDR) or left-sided (PDL) motor symptom onset remain unclear.

Purpose: To investigate the spatial vulnerability and interrelationship of NM and iron in the SN among PDR, PDL, and healthy controls (HCs) using MRI.

View Article and Find Full Text PDF