98%
921
2 minutes
20
The presence of amyloid fibrils is a characteristic feature of many diseases, most famously neurodegenerative disease. The supramolecular structure of these fibrils appears to be disease-specific. Identifying the unique morphologies of amyloid fibrils could, therefore, form the basis of a diagnostic tool. Here we report a method to characterize the morphology of α-synuclein (αSyn) fibrils based on profiling multiple different ligand binding sites that are present on the surfaces of fibrils. By employing various competition binding assays, seven different types of binding sites were identified on four different morphologies of αSyn fibrils. Similar binding sites on different fibrils were shown to bind ligands with significantly different affinities. We combined this information to construct individual profiles for different αSyn fibrils based on the distribution of binding sites and ligand interactions. These results demonstrate that ligand-based profiling can be used as an analytical method to characterize fibril morphologies with operationally simple fluorescence binding assays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722502 | PMC |
http://dx.doi.org/10.1021/jacs.3c10521 | DOI Listing |
Mater Today Bio
October 2025
Yunnan Key Laboratory of Breast Cancer Precision Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.
Achieving precise intratumoral accumulation and coordinated activation remains a major challenge in nanomedicine. Photothermal therapy (PTT) provides spatiotemporal control, yet its efficacy is hindered by heterogeneous distribution of PTT agents and limited synergy with other modalities. Here, we develop a dual-activation nanoplatform (IrO-P) that integrates exogenous photothermal stimulation with endogenous tumor microenvironment (TME)-responsive catalysis for synergistic chemodynamic therapy (CDT) and ferroptosis induction.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2025
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic.
Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University Zagazig 44511 Egypt
A novel isatin-thiazole-coumarin hybrid and three isatin-hydantoin hybrids were synthesized and assessed for their α-glucosidase and anticholinesterase inhibitory activities. Moreover, their anticancer properties have been observed against the breast cancer cell lines MCF-7 and MDA-MB-231. The coumarin-containing hybrid exhibited the most potent biological activity across all assays.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Zinc(II) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Abnormal glycosylation is widespread in cancer, and the overexpression of glycoantigens is a manifestation of glycosylation abnormalities. Tn antigen, sTn antigen, and T antigen are known as tumor-associated glycoantigens, and their expression varies in different tumors or subtypes of the same tumor. Therefore, simultaneous detection of these three glycoantigens is of great significance for the diagnosis of tumors.
View Article and Find Full Text PDF