Single-cell transcriptomics identifies perturbed molecular pathways in midbrain organoids using α-synuclein triplication Parkinson's disease patient-derived iPSCs.

Neurosci Res

UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AH, UK. Electronic address:

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Three-dimensional (3D) brain organoids provide a platform to study brain development, cellular coordination, and disease using human tissue. Here, we generate midbrain dopaminergic (mDA) organoids from induced pluripotent stem cells (iPSC) from healthy and Parkinson's Disease (PD) donors and assess them as a human PD model using single-cell RNAseq. We characterize cell types in our organoid cultures and analyze our model's Dopamine (DA) neurons using cytotoxic and genetic stressors. Our study provides the first in-depth, single-cell analysis of SNCA triplication and shows evidence for molecular dysfunction in oxidative phosphorylation, translation, and ER protein-folding in DA neurons. We perform an in-silico identification of rotenone-sensitive DA neurons and characterization of corresponding transcriptomic profiles associated with synaptic signalling and cholesterol biosynthesis. Finally, we show a novel chimera organoid model from healthy and PD iPSCs allowing the study of DA neurons from different individuals within the same tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2023.06.001DOI Listing

Publication Analysis

Top Keywords

single-cell transcriptomics
4
transcriptomics identifies
4
identifies perturbed
4
perturbed molecular
4
molecular pathways
4
pathways midbrain
4
midbrain organoids
4
organoids α-synuclein
4
α-synuclein triplication
4
triplication parkinson's
4

Similar Publications

Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.

View Article and Find Full Text PDF

Genomic characterization of normal and aberrant human milk production.

Sci Adv

September 2025

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.

Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.

View Article and Find Full Text PDF

Interferon-induced senescent CD8 T cells reduce anti-PD1 immunotherapy efficacy in early triple-negative breast cancer.

Sci Transl Med

September 2025

Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.

Triple-negative breast cancers (TNBCs) lack predictive biomarkers to guide immunotherapy, especially during early-stage disease. To address this issue, we used single-cell RNA sequencing, bulk transcriptomics, and pathology assays on samples from 171 patients with early-stage TNBC receiving chemotherapy with or without immunotherapy. Our investigation identified an enriched subset of interferon (IFN)-induced CD8 T cells in early TNBC samples, which predict immunotherapy nonresponsiveness.

View Article and Find Full Text PDF

The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF