A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Characterization of Thymoquinone-Sulfobutylether-β-Cyclodextrin Inclusion Complex for Anticancer Applications. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thymoquinone (TQ) is a quinone derived from the black seed and has been extensively studied in pharmaceutical and nutraceutical research due to its therapeutic potential and pharmacological properties. Although the chemopreventive and potential anticancer effects of TQ have been reported, its limited solubility and poor delivery remain the major limitations. In this study, we aimed to characterize the inclusion complexes of TQ with Sulfobutylether-β-cyclodextrin (SBE-β-CD) at four different temperatures (293-318 K). Additionally, we compared the antiproliferative activity of TQ alone to TQ complexed with SBE-β-CD on six different cancer cell lines, including colon, breast, and liver cancer cells (HCT-116, HT-29, MDA-MB-231, MCF-7, SK-BR-3, and HepG2), using an MTT assay. We calculated the thermodynamic parameters (ΔH, ΔS, and ΔG) using the van't Holf equation. The inclusion complexes were characterized by X-ray diffraction (XRD), Fourier transforms infrared (FT-IR), and molecular dynamics using the PM6 model. Our findings revealed that the solubility of TQ was improved by ≥60 folds, allowing TQ to penetrate completely into the cavity of SBE-β-CD. The IC values of TQ/SBE-β-CD ranged from 0.1 ± 0.01 µg/mL against SK-BR-3 human breast cancer cells to 1.2 ± 0.16 µg/mL against HCT-116 human colorectal cancer cells, depending on the cell line. In comparison, the IC values of TQ alone ranged from 0.2 ± 0.01 µg/mL to 4.7 ± 0.21 µg/mL. Overall, our results suggest that SBE-β-CD can enhance the anticancer effect of TQ by increasing its solubility and bioavailability and cellular uptake. However, further studies are necessary to fully understand the underlying mechanisms and potential side effects of using SBE-β-CD as a drug delivery system for TQ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223034PMC
http://dx.doi.org/10.3390/molecules28104096DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
inclusion complexes
8
ranged 001
8
001 µg/ml
8
sbe-β-cd
5
characterization thymoquinone-sulfobutylether-β-cyclodextrin
4
thymoquinone-sulfobutylether-β-cyclodextrin inclusion
4
inclusion complex
4
complex anticancer
4
anticancer applications
4

Similar Publications