A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CuAPO-5 as a Multiphase Catalyst for Synthesis of Verbenone from α-Pinene. | LitMetric

CuAPO-5 as a Multiphase Catalyst for Synthesis of Verbenone from α-Pinene.

Materials (Basel)

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Copper(II)-containing aluminum phosphate material (CuAPO-5) was synthesized hydrothermally and used as a multiphase catalyst for the oxidation of α-pinene to verbenone. The catalysts were analyzed using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area techniques, X-ray photoelectron spectroscopy (XPS), and ammonia temperature programmed reduction (NH-TPD). Scanning electron microscopy (SEM), X-ray energy spectrometry (EDS), inductively coupled plasma emission spectroscopy (ICP-OES), Fourier infrared spectroscopy (FT-IR), and ultraviolet-visible spectroscopy (UV-vis) were performed to characterize the material. The effects of reaction temperature, reaction time, n(α-pinene)/n(TBHP), and solvent on the catalytic performance of CuAPO-5 were investigated. The results show that all the prepared catalysts have AFI topology and a large specific surface area. Copper is evenly distributed in the skeleton in a bivalent form. The introduction of copper increases the acid content of the catalyst. Under the optimized reaction conditions, 96.8% conversion of α-pinene and 46.4% selectivity to verbenone were achieved by CuAPO-5(0.06) molecular sieve within a reaction time of 12 h. CuAPO-5(0.06) can be recycled for five cycles without losing the conversion of α-pinene and the selectivity to verbenone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697102PMC
http://dx.doi.org/10.3390/ma15228097DOI Listing

Publication Analysis

Top Keywords

multiphase catalyst
8
surface area
8
reaction time
8
conversion α-pinene
8
selectivity verbenone
8
cuapo-5 multiphase
4
catalyst synthesis
4
verbenone
4
synthesis verbenone
4
α-pinene
4

Similar Publications