Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Chiral imidodiphosphates (IDPs) have emerged as strong Brønsted acid catalysts for many enantioselective processes. However, the dynamic transformation between O,O-syn and O,O-anti conformers typically results in low enantioselectivity. Here we demonstrate that topologies of metal-organic frameworks (MOFs) can be exploited to control IDP conformations and local chiral microenvironments for enantioselective catalysis. Two porous Dy-MOFs with different topologies are obtained from an enantiopure 1,1'-biphenol IDP-based tetracarboxylate ligand. While the ligand adopts a 4- or 3-connected (c) binding mode, all IDPs are rigidified to get only a single O,O-syn conformation and display greatly enhanced Brønsted acidity relative to the free IDP. The MOF with the 4-c IDP that has a relatively less compact shape than the 3-c IDP can be an efficient and recyclable heterogeneous Brønsted acid catalysing the challenging asymmetric O,O-acetalization reaction with up to 96 % enantiomeric excess.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202214748 | DOI Listing |