98%
921
2 minutes
20
Objectives: This study aimed to develop and evaluate a novel air-dried high-resolution melt (HRM) assay to detect eight major extended-spectrum β-lactamase (ESBL) (bla and bla groups 1 and 9) and carbapenemase (bla, bla, bla, bla and bla) genes that confer resistance to cephalosporins and carbapenems.
Methods: The assay was evaluated using 439 DNA samples extracted from bacterial isolates from Nepal, Malawi and the UK and 390 clinical isolates from Nepal with known antimicrobial susceptibility. Assay reproducibility was evaluated across five different real-time quantitative PCR (qPCR) instruments [Rotor-Gene® Q, QuantStudio 5, CFX96, LightCycler® 480 and Magnetic Induction Cycler (Mic)]. Assay stability was also assessed under different storage temperatures (6.2 ± 0.9°C, 20.4 ± 0.7°C and 29.7 ± 1.4°C) at six time points over 8 months.
Results: The sensitivity and specificity (with 95% confidence intervals) for detecting ESBL and carbapenemase genes was 94.7% (92.5-96.5%) and 99.2% (98.8-99.5%) compared with the reference gel-based PCR and sequencing and 98.3% (97.0-99.3%) and 98.5% (98.0-98.9%) compared with the original HRM wet PCR mix format. Overall agreement was 91.1% (90.0-92.9%) when predicting phenotypic resistance to cefotaxime and meropenem among Enterobacteriaceae isolates. We observed almost perfect inter-machine reproducibility of the air-dried HRM assay, and no loss of sensitivity occurred under all storage conditions and time points.
Conclusion: We present a ready-to-use air-dried HRM PCR assay that offers an easy, thermostable, fast and accurate tool for the detection of ESBL and carbapenemase genes in DNA samples to improve antimicrobial resistance detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692233 | PMC |
http://dx.doi.org/10.1016/j.jgar.2021.08.006 | DOI Listing |
Vet World
July 2025
Microbiology Laboratory, Veterinary Hospital of the Federal University of Mato Gross - UFMT, Cuiabá, Mato Grosso, Brazil.
Background And Aim: The global rise of multidrug-resistant (MDR) poses a serious threat to human and animal health. Close proximity between humans and domestic animals may facilitate zoonotic transmission of MDR strains, underscoring the need for integrated surveillance strategies. This study aimed to investigate the genetic diversity, resistance mechanisms, and virulence gene profiles of isolates from domestic animals and humans in Mato Grosso, Brazil, within the One Health framework.
View Article and Find Full Text PDFJ Neurosci
September 2025
Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada, H4B 1R6
Adaptive behavior depends on a dynamic balance between acquisition and extinction memories. Male and female rodents differ in extinction learning rates, suggestion potential sex-based differences in this balance. In males, deletion of extinction-recruited neurons in the central nucleus (CN) of the amygdala impairs extinction retrieval, shifting behavior toward acquisition (Lay et al.
View Article and Find Full Text PDFRadiology
September 2025
Department of Neuroradiology, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Göteborg, Sweden.
Environ Sci Technol
September 2025
Solar Energy Research Centre (CIESOL), Joint Centre of the University of Almería-CIEMAT, Carretera de Sacramento s/n, Almería 04120, Spain.
This work aims to investigate the occurrence of 31 antibiotics (ABs), 2 bacteria ( and spp.) and their counterpart antibiotic-resistant bacteria (carbapenem and cephalosporin families), and several antibiotic-resistant genes (ARGs) throughout a full distribution system of reclaimed water (RW) in a real-scale scenario. The RW was analyzed (i) before and after the tertiary treatment (sand filtration and chlorination), (ii) during the storage period in secondary ponds before its use in irrigation, and (iii) directly in the droppers installed in four plastic-based greenhouses over 9 months.
View Article and Find Full Text PDFInfect Prev Pract
September 2025
Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania.
Background: Hospital surfaces are critical reservoirs of multidrug-resistant pathogens, including third-generation cephalosporin-resistant Gram-negative bacteria (3GC-R-GNB), significantly contributing to healthcare-associated infections (HCAIs). This challenge is pronounced in low- and middle-income countries, where resource constraints limit effective infection prevention and control (IPC) measures. This study screened hospital surfaces for 3GC-R-GNB in selected District Hospitals (DHs) in Mwanza, Tanzania.
View Article and Find Full Text PDF