Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We compute the Soret coefficient for a particle moving through a fluid subjected to a temperature gradient. The viscosity and thermal conductivity of the particle are in general different from those of the solvent and its surface tension may depend on temperature. We find that the Soret coefficient depends linearly on the derivative of the surface tension with respect to temperature and decreases in accordance with the ratios between viscosities and thermal conductivities of particle and solvent. Additionally, the Soret coefficient also depends on a parameter which gives the ratio between Marangoni and shear stresses, a dependence which results from the local stresses inducing a heat flux along the particle surface. Our results are compared to those obtained by using the Stokes value for the mobility in the calculation of the Soret coefficient and in the estimation of the radius of the particle. We show cases in which these differences may be important. The new expression of the Soret coefficient can systematically be used for a more accurate study of thermophoresis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/i2019-11822-y | DOI Listing |