A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Decellularized matrix is of great interest as a scaffold for the tissue engineering heart valves due to its naturally three-dimensional structure and bioactive composition. A primary challenge of tissue engineered heart valves based on decellularized matrix is to grow a physiologically appropriate cell population within the leaflet tissue. In this study, a composite scaffold was fabricated by the combination of a porous matrix metalloproteinase (MMP) degradable poly (ethylene glycol) (PEG) hydrogel that were loaded with stromal cell-derived factor-1α (SDF-1α) and a mechanically supportive decellularized porcine aortic valve. Results demonstrated that the modified scaffold enhanced bone marrow mesenchymal stem cells (BMSC) adhesion, viability and proliferation, and promoted BMSC differentiate into valve interstitial-like cells. Furthermore, these modifications lead to enhanced protection of the scaffold from thrombosis. In vivo assessment by rat subdermal model showed the modified scaffold was highly biocompatible with tissue remodeling characterized by promoting mesenchymal stem cells recruitment and facilitating M2 macrophage phenotype polarization. The surface layers of PEG hydrogel not only could provide a niche for cell migration, proliferation and differentiation, but also protect the scaffolds from rapid degeneration, inflammation and calcification. The intermediate layer of decellularized valve could maintain the organization of the scaffold and perform the valve function. The promising results emphasize the potential of our scaffolds to improve recellularization and promote remodeling of implanted decellularized valves. These findings suggest that the SDF-1α loaded MMP degradable PEG hydrogel modification could be an efficient approach to develop functional decellularized heart valve. STATEMENT OF SIGNIFICANCE: A composite scaffold was fabricated by the combination of a porous matrix metalloproteinase (MMP) degradable poly (ethylene glycol) (PEG) hydrogel that were loaded with SDF-1α and a mechanically supportive decellularized porcine aortic valve. The surface layers of PEG hydrogel not only could provide a niche for cell migration, proliferation and differentiation, but also protect the scaffolds from rapid degeneration, inflammation and calcification. The intermediate layer of decellularized valve could maintain the organization of the scaffold and perform the valve function. The promising results emphasize the ability of our scaffolds to improve recellularization and promote remodeling of implanted decellularized valves. This suggests that the extracellular matrix-based valve scaffolds have potential for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.02.002DOI Listing

Publication Analysis

Top Keywords

peg hydrogel
20
aortic valve
12
mmp degradable
12
valve
10
decellularized
9
valve scaffolds
8
stromal cell-derived
8
cell-derived factor-1α
8
decellularized matrix
8
scaffold
8

Similar Publications