98%
921
2 minutes
20
DYT1 dystonia is a neurological disease caused by a dominant mutation that results in the loss of a glutamic acid in the endoplasmic reticulum-resident protein torsinA. Currently, treatments are symptomatic and only provide partial relief. Multiple reports support the hypothesis that selectively reducing expression of mutant torsinA without affecting levels of the wild type protein should be beneficial. Published cell-based studies support this hypothesis. It is unclear, however, if phenotypes are reversible by targeting the molecular defect once established in vivo. Here, we generated adeno-associated virus encoding artificial microRNA targeting human mutant torsinA and delivered them to the striatum of symptomatic transgenic rats that express the full human TOR1A mutant gene. We achieved efficient suppression of human mutant torsinA expression in DYT1 transgenic rats, partly reversing its accumulation in the nuclear envelope. This intervention rescued PERK-eIF2α pathway dysregulation in striatal projection neurons but not behavioral abnormalities. Moreover, we found abnormal expression of components of dopaminergic neurotransmission in DYT1 rat striatum, which were not normalized by suppressing mutant torsinA expression. Our findings demonstrate the reversibility of translational dysregulation in DYT1 neurons and confirm the presence of abnormal dopaminergic neurotransmission in DYT1 dystonia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2018.10.025 | DOI Listing |
Exp Neurol
September 2023
Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
Dystonia is a neurological movement disorder characterized by repetitive, unintentional movements and disabling postures that result from sustained or intermittent muscle contractions. The basal ganglia and cerebellum have received substantial focus in studying DYT1 dystonia. It remains unclear how cell-specific ∆GAG mutation of torsinA within specific cells of the basal ganglia or cerebellum affects motor performance, somatosensory network connectivity, and microstructure.
View Article and Find Full Text PDFMov Disord
May 2022
IRCCS Fondazione Mondino, Pavia, Italy.
Background: The neuronal protein alpha-synuclein (α-Syn) is crucially involved in Parkinson's disease pathophysiology. Intriguingly, torsinA (TA), the protein causative of DYT1 dystonia, has been found to accumulate in Lewy bodies and to interact with α-Syn. Both proteins act as molecular chaperones and control synaptic machinery.
View Article and Find Full Text PDFBehav Brain Res
August 2021
Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA. Electronic address:
DYT1 dystonia is a movement disorder mainly caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), coding for torsinA. DYT1 dystonia patients show trends of decreased striatal ligand-binding activities to dopamine receptors 1 (D1R) and 2 (D2R). Dyt1 ΔGAG knock-in (KI) mice, which have the corresponding ΔGAG deletion, similarly exhibit reduced striatal D1R and D2R-binding activities and their expression levels.
View Article and Find Full Text PDFNeurobiol Dis
July 2021
Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States. Electronic address:
Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry heterozygous DYT1 ∆GAG mutations causing a loss of a glutamic acid of the protein torsinA. Patients can be treated with anticholinergics, such as trihexyphenidyl, suggesting an abnormal cholinergic state.
View Article and Find Full Text PDFIn inherited neurodevelopmental diseases, pathogenic processes unique to critical periods during early brain development may preclude the effectiveness of gene modification therapies applied later in life. We explored this question in a mouse model of DYT1 dystonia, a neurodevelopmental disease caused by a loss-of-function mutation in the TOR1A gene encoding torsinA. To define the temporal requirements for torsinA in normal motor function and gene replacement therapy, we developed a mouse line enabling spatiotemporal control of the endogenous torsinA allele.
View Article and Find Full Text PDF