Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A high-sensitivity temperature sensor based on the enhanced Goos-Hänchen effect in a symmetrical metal-cladding waveguide is theoretically proposed and experimentally demonstrated. Owing to the high sensitivity of the ultrahigh-order modes, any minute variation of the refractive index and thickness in the guiding layer induced by the thermo-optic and thermal expansion effects will easily give rise to a dramatic change in the position of the reflected light. In our experiment, a series of Goos-Hänchen shifts are measured at temperatures varying from 50.0 °C to 51.2 °C with a step of 0.2 °C. The sensor exhibits a good linearity and a high resolution of approximately 5×10(-3) °C. Moreover, there is no need to employ any complicated optical equipment and servo techniques, since our transduction scheme is irrelevant to the light source fluctuation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.013380 | DOI Listing |