Publications by authors named "Timothy D Phillips"

Per- and polyfluoroalkyl substances (PFAS) are usually found in mixtures with other toxic compounds. Therefore, the study and design of broad acting sorbents, such as clays, is an attractive sorption solution. We previously demonstrated that clays amended with choline and carnitine could enhance PFAS sorption properties.

View Article and Find Full Text PDF

Pharmacological doses of zinc oxide (ZnO), far in excess of the nutritional requirement for zinc, are commonly added to weanling swine feed to suppress enterotoxigenic bacteria and thereby support piglet weight gains. However, excessive ZnO in the diet has come under scrutiny due to concerns that excreted zinc may accumulate beyond safe levels within topsoil and water supplies, as well as foster antibiotic drug resistance in bacterial pathogens that could then infect livestock and/or humans. Indeed, multidrug-resistant (MDR) have been isolated from swine feces, focusing attention on new technologies to protect swine (and ultimately humans) while reducing dietary zinc toward the nutritional requirement.

View Article and Find Full Text PDF

The incidence of mycotoxin occurrence throughout the entire lifespan of some agricultural products could be due to climatic conditions and environmental factors (including high temperature, drought, and heavy rainfall) that enhance growth of fungi. Deoxynivalenol (DON) which is also referred to as vomitoxin is a mycotoxin produced from many Fusarium species. DON ranks high among the prominent mycotoxins in cereal products and is a ubiquitous toxin in livestock feeds.

View Article and Find Full Text PDF

PFAS (per- and polyfluoroalkyl substances) are prevalent and persistent environmental pollutants with significant toxicity, especially during critical windows of exposure such as pregnancy and lactation. This study investigated the prenatal and postnatal effects of PFAS exposure on the serum and liver of Sprague-Dawley rats, and the mitigating efficacy of orally administered sorbents. Animal groups included vehicle control, PFAS (0.

View Article and Find Full Text PDF

Cereal rye (Secale cereale) is a grain, forage, and cover crop, with specific regional production practices. Maintaining regional varieties is challenged by rye reproductive biology, as wind pollination may dilute varietal distinction. Similarly, breeding new population varieties for regional needs lacks efficiency gains seen in other grains.

View Article and Find Full Text PDF

Unlabelled: Exposure of animals and humans to PFAS through contaminated water and foods pose significant threats to public health. To tackle this challenge, this study aimed to develop edible clays that might enhance the binding, detoxification, and elimination of PFAS in the gastrointestinal tract. Montmorillonite clays (CM) were amended with caffeine (CMCAF), curcumin (CMCUR), and riboflavin (CMRIB), and the binding efficacy for a mixture of four PFAS (PFOS, GenX, PFOA and PFBS) was determined.

View Article and Find Full Text PDF

Dietary and environmental exposure to aflatoxins via contaminated food items can pose major health challenges to both humans and animals. Studies have reported the coexistence of aflatoxins and other environmental toxins. This emphasizes the urgent need for efficient and effective mitigation strategies for aflatoxins.

View Article and Find Full Text PDF

Salmonella Typhimurium and Escherichia coli represent foodborne pathogens that can trigger diarrhea and diminish weight gains in livestock, as well as cause gastroenteritis in humans. Although prophylactic antibiotics have been used historically on the farm to limit bacterial pathogens and promote animal growth, this practice may also foster antimicrobial resistant (AMR) strains of bacteria and deplete our arsenal of effective antibiotic therapies. Incorporation of free chemical zinc oxide (ZnO) into animal feed, at doses far above nutritional requirements, has largely replaced prophylactic antibiotics; however, environmental concerns are mounting around unabsorbed zinc (excreted in feces) impacting soil microbes and thereby contributing to the AMR threat.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change contributes to mycotoxicosis outbreaks by creating conditions for droughts and increased fungal growth, leading to higher mycotoxin exposure.
  • A promising detoxification method involves using clay-based materials that can bind mycotoxins in the gastrointestinal tract, reducing their absorption and toxicity.
  • The study found that chlorophyll-amended montmorillonite clay (CMCH) effectively binds and detoxifies ochratoxin A (OTA), outperforming other sorbents, and demonstrated significant toxicity reduction in organisms exposed to OTA.
View Article and Find Full Text PDF

The removal of heavy metals from wastewater remains a challenge due to the limitations of current remediation methods. This study aims to develop multicomponent composites as inexpensive and environmentally friendly sorbents with enhanced capture of cadmium (Cd) and lead (Pb). The composites are based on calcium montmorillonite (CM) and activated carbon (AC) because of their proven effectiveness as sorbents for diverse toxins in environmental settings.

View Article and Find Full Text PDF

Value-based health care has been accelerated by alternative payment models and has catalyzed the redesign of care delivery across the nation. Lifestyle medicine (LM) is one of the fastest growing medical specialties and has emerged as a high-value solution for root cause treatment of chronic disease. This review detailed a large integrated health care delivery system's value transformation efforts in the nonoperative treatment of musculoskeletal (MSK) conditions by placing patient-centric, team-based, lifestyle-focused care at the foundation.

View Article and Find Full Text PDF

Benzene is a carcinogenic volatile organic compound (VOC) that is ubiquitously detected in enclosed spaces due to emissions from cooking activities, building materials, and cleaning products. To remove benzene and other VOCs from indoor air and protect public health, traditional fabric filters have been modified to contain activated carbons to enhance the filtration efficacy. In this study, composites derived from natural clay minerals and activated carbon were individually green-engineered with chlorophylls and were attached to the surface of filter materials.

View Article and Find Full Text PDF

Toxic substances, such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, can accumulate in soil, posing a risk to human health and the environment. To reduce the risk of exposure, rapid identification and remediation of potentially hazardous soils is necessary. Adsorption of contaminants by activated carbons and clay materials is commonly utilized to decrease the bioavailability of chemicals in soil and environmental toxicity in vitro, and this study aims to determine their efficacy in real-life soil samples.

View Article and Find Full Text PDF

Remediation methods for soil contaminated with poly- and perfluoroalkyl substances (PFAS) are needed to prevent their leaching into drinking water sources and to protect living organisms in the surrounding environment. In this study, the efficacy of processed and amended clays and carbons as soil amendments to sequester PFAS and prevent leaching was assessed using PFAS-contaminated soil and validated using sensitive ecotoxicological bioassays. Four different soil matrices including quartz sand, clay loam soil, garden soil, and compost were spiked with 4 PFAS congeners (PFOA, PFOS, GenX, and PFBS) at 0.

View Article and Find Full Text PDF

Pesticides are commonly found in the environment and pose a risk to target and non-target species; therefore, employing a set of bioassays to rapidly assess the toxicity of these chemicals to diverse species is crucial. The toxicity of nine individual pesticides from organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen chemical classes and a mixture of all the compounds were tested in three bioassays (Hydra vulgaris, Lemna minor, and Caenorhabditis elegans) that represent plant, aquatic, and soil-dwelling species, respectively. Multiple endpoints related to growth and survival were measured for each model, and EC and EC values were derived for each endpoint to identify sensitivity patterns according to chemical classes and target organisms.

View Article and Find Full Text PDF

Human exposure to micro- and nanoplastics (MNPs) commonly occurs through the consumption of contaminated drinking water. Among these, polystyrene (PS) is well-characterized and is one of the most abundant MNPs, accounting for 10 % of total plastics. Previous studies have focused on carbonaceous materials to remove MNPs by filtration, but most of the work has involved microplastics since nanoplastics (NPs) are smaller in size and more difficult to measure and remove.

View Article and Find Full Text PDF

The co-occurrence of glyphosate (GLP) and aminomethylphosphonic acid (AMPA) in contaminated water, soil, sediment and plants is a cause for concern due to potential threats to the ecosystem and human health. A major route of exposure is through contact with contaminated soil and consumption of crops containing GLP and AMPA residues. However, clay-based sorption strategies for mixtures of GLP and AMPA in soil, plants and garden produce have been very limited.

View Article and Find Full Text PDF

Introduction: Neurological diseases can stem from environmental influences such as antecedent viral infections or exposure to potential toxicants, some of which can trigger immune responses leading to neurological symptoms. Theiler's murine encephalomyelitis virus (TMEV) is used to model human neurological conditions associated with prior viral infections, with outcomes partly attributable to improper induction and regulation of the immune response. Perfluorooctanoic acid (PFOA) can alter pathologies known to influence neurological disease such as inflammatory responses, cytokine expression, and glial activation.

View Article and Find Full Text PDF

The objective of this study was to assess in vitro antibacterial activity of barrier cream (EVB) formulations containing either calcium montmorillonite (CM) or lecithin-amended montmorillonite (CML). All ingredients were generally recognized as safe (GRAS), and clay minerals were specifically studied due to their known ability to adsorb numerous toxins of human clinical relevance. Characterization of the EVB formulations showed good spreadability, pH, appearance, unity, viscosity, and no evidence of phase separation.

View Article and Find Full Text PDF

Focus on local food production and supply chains has heightened in recent years, as evidenced and amplified by the COVID-19 pandemic. This study aimed to assess the suitability of soft red winter (SRW) wheat breeding lines for local artisan bakers interested in locally sourced, strong gluten wheat for bread. Seventy-six genotyped SRW wheat breeding lines were milled into whole wheat flour and baked into small loaves.

View Article and Find Full Text PDF

Dermal exposures to hazardous environmental chemicals in water can significantly affect the morphology and integrity of skin structure, leading to enhanced and deeper penetration. Organic solvents, such as benzene, toluene, and xylene (BTX), have been detected in humans following skin exposure. In this study, novel barrier cream formulations (EVB) engineered with either montmorillonite (CM and SM) or chlorophyll-amended montmorillonite (CMCH and SMCH) clays were tested for their binding efficacy for BTX mixtures in water.

View Article and Find Full Text PDF

The co-occurrence of mixtures of glyphosate (GLP) and aminomethylphosphonic acid (AMPA) in contaminated water, soil, sediment, and plants is a cause for concern due to potential threats to the ecosystem and human health. Major routes of exposure include contact with contaminated water and soil and through consumption of crops containing GLP and AMPA residues. Calcium montmorillonite (CM) and acid-processed montmorillonite (APM) clays were investigated for their ability to tightly sorb and detoxify GLP and AMPA mixtures.

View Article and Find Full Text PDF

Nanoplastic pollution is increasing worldwide and poses a threat to humans, animals, and ecological systems. High-throughput, reliable methods for the isolation and separation of NMPs from drinking water, wastewater, or environmental bodies of water are of interest. We investigated iron oxide nanoparticles (IONPs) with hydrophobic coatings to magnetize plastic particulate waste for removal.

View Article and Find Full Text PDF

After disasters, such as forest fires and oil spills, high levels of benzene (> 1 ppm) can be detected in the water, soil, and air surrounding the disaster site, which poses a significant health risk to human, animal, and plant populations in the area. While remediation methods with activated carbons have been employed, these strategies are limited in their effectiveness due to benzene's inherent stability and limited retention to most surfaces. To address this problem, calcium and sodium montmorillonite clays were amended with a mixture of chlorophyll (a) and (b); their binding profile and ability to detoxify benzene were characterized using in vitro, in silico, and well-established ecotoxicological (ecotox) bioassay methods.

View Article and Find Full Text PDF

Dermal exposures to environmental chemicals can significantly affect the morphology and integrity of skin structure, leading to enhanced and deeper penetration of toxic chemicals. This problem can be magnified during disasters where hazardous water-soluble chemicals are readily mobilized and redistributed in the environment, threatening the health of vulnerable populations at the impacted sites. To address this issue, barrier emulsion formulations (EVB) have been developed consisting of materials that are generally recognized as safe, with the inclusion of medical grade carbon or calcium and sodium montmorillonite clays (CM and SM).

View Article and Find Full Text PDF